Skip to main content

Nontest Methods to Predict Acute Toxicity: State of the Art for Applications of In Silico Methods

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

The assessment of acute toxicity of chemicals by in silico methods is actually done by two methodologies, read-across and QSAR. The two approaches are strongly based on the similarity between the chemical for which a risk assessment is required and the reference chemical(s) for which the experimental data are known. Here, we describe the two methodologies with some main publications as illustrations and the in silico data associated with acute toxicity endpoints (ECHA, REACH) accessible via eChemPortal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walum E (1998) Acute oral toxicity. Environ Health Perspect 106(Suppl 2):497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ECHA (2016) Acute toxicity. Guidance on IR&CSA, Section R.7.4. https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment

  3. ECHA (2016) Guidance on the application of CLP criteria. https://echa.europa.eu/regulations/clp/classification

  4. UNECE globally harmonized system of classification and labelling of chemicals (GHS). http://www.unece.org/trans/danger/publi/ghs/ghs_rev00/00files_e.html

  5. Gissi A, Louekari K, Hoffstadt L, Bornatowicz N, Aparicio AM (2016) Alternative acute oral toxicity assessment under REACH based on sub-acute toxicity values. ALTEX 34:353–361

    PubMed  Google Scholar 

  6. Blomme EA, Will Y (2016) Toxicology strategies for drug discovery: present and future. Chem Res Toxicol 29:473–504

    Article  CAS  PubMed  Google Scholar 

  7. Lapenna S, Fuart-Gatnik M, Worth A (2010) Review of QSAR models and software tools for predicting acute and chronic systemic toxicity. JRC Scientifica and Technical Reports. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC61930/eur_24639_en.pdf

  8. Nicolotti O, Benfenati E, Carotti A, Gadaleta D, Gissi A, Mangiatordi GF, Novellino E (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19:1757–1768

    Article  CAS  PubMed  Google Scholar 

  9. Toropov AA, Toropova AP, Raska I, Leszczynska D, Leszczynski J (2014) Comprehension of drug toxicity: software and databases. Comput Biol Med 45:20–25

    Article  CAS  PubMed  Google Scholar 

  10. TEST user’s guide for T.E.S.T. (version 4.2) (toxicity estimation software tool) a program to estimate toxicity from molecular structure. https://www.epa.gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-estimate

  11. ECHA (2017) https://echa.europa.eu/

  12. ACD ACD/Percepta. http://www.acdlabs.com/products/percepta/physchem_adme_tox/

  13. QSAR Toolbox. https://www.qsartoolbox.org/

  14. SimulationsPLUS ADMET predictors. http://www.simulations-plus.com/software/admet-property-prediction-qsar/

  15. BIOVIA QSAR, ADMET and predictive toxicology. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html

  16. Multicase. http://www.multicase.com/

  17. actor. https://actor.epa.gov/actor/home.xhtml

  18. Terrabase TerraTox. http://www.terrabase-inc.com/

  19. TOXNET. https://toxnet.nlm.nih.gov/

  20. ChemIDPLus. http://sis.nlm.nih.gov/chem/alllocators.html

  21. Leadscope. http://www.leadscope.com/

  22. eChemPortal. https://www.echemportal.org/echemportal/index.action

  23. The Merck Index. https://www.rsc.org/Merck-Index/

  24. PAN Pesticide Action Network. http://www.pesticideinfo.org/

  25. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patlewicz G, Fitzpatrick JM (2016) Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chem Res Toxicol 29:438–451

    Article  CAS  PubMed  Google Scholar 

  27. ECHA (2008) Guidance on information requirements and chemical safety assessment, QSAR and grouping of chemicals (Chapter R.6). https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment

  28. Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov 11:137–148

    Article  CAS  PubMed  Google Scholar 

  29. Cereto-Massague A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallve S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63

    Article  CAS  PubMed  Google Scholar 

  30. Stanton K, Kruszewski FH (2016) Quantifying the benefits of using read-across and in silico techniques to fulfill hazard data requirements for chemical categories. Regul Toxicol Pharmacol 81:250–259

    Article  CAS  PubMed  Google Scholar 

  31. Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

    Article  CAS  PubMed  Google Scholar 

  32. Lipnick RL (1999) Correlative and mechanistic QSAR models in toxicology. SAR QSAR Environ Res 10:239–248

    Article  CAS  PubMed  Google Scholar 

  33. de Wolf W, Lieder PH, Walker JD (2004) Application of QSARs: correlation of acute toxicity in the rat following oral or inhalation exposure. QSAR Comb Sci 23:521–525

    Article  CAS  Google Scholar 

  34. Hansch C, Leo A, Hoekman D (eds) (1995) Exploring QSAR: hydrophobic, electronic, and steric constants, vol 2. ACS professional reference book. American Chemical Society, Washington, DC

    Google Scholar 

  35. Tsakovska I, Lessigiarska I, Netzeva T, Worth AP (2008) A mini review of mammalian toxicity (Q)SAR models. QSAR Comb Sci 27:41–48

    Article  CAS  Google Scholar 

  36. Cronin MTD, Dearden JC, Duffy JC, Edwards R, Manga N, Worth AP, Worgan ADP (2002) The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ Res 13:167–176

    Article  CAS  PubMed  Google Scholar 

  37. Devillers J, Devillers H (2009) Prediction of acute mammalian toxicity from QSARs and interspecies correlations. SAR QSAR Environ Res 20:467–500

    Article  CAS  PubMed  Google Scholar 

  38. Gonella Diaza R, Manganelli S, Esposito A, Roncaglioni A, Manganaro A, Benfenati E (2015) Comparison of in silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res 26:1–27

    Article  CAS  Google Scholar 

  39. Chavan S, Nicholls IA, Karlsson BC, Rosengren AM, Ballabio D, Consonni V, Todeschini R (2014) Towards global QSAR model building for acute toxicity: Munro database case study. Int J Mol Sci 15:18162–18174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Munro IC, Ford RA, Kennepohl E, Sprenger JG (1996) Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food Chem Toxicol 34:829–867

    Article  CAS  PubMed  Google Scholar 

  41. TALETE Dragon 7. http://www.talete.mi.it/products/dragon_description.htm

  42. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A (2011) Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect 119:364–370

    Article  CAS  PubMed  Google Scholar 

  43. QMRF, JRC Europen Commission. http://qsardb.jrc.it/qmrf/search_catalogs.jsp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Bureau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bureau, R. (2018). Nontest Methods to Predict Acute Toxicity: State of the Art for Applications of In Silico Methods. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics