Skip to main content

TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings

  • Protocol
  • First Online:
Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity. The tobacco mosaic virus coat protein is used as a command surface to grow and assemble silver nanoparticles into sub-30 nm rings. The versatility of TMV allows the formation of both solid silver rings and rings consisting of discrete silver nanoparticles. The pH-dependent coulombic surface map along with the annular geometry of the protein aggregate allow the generation of rings with or without a central nanoparticle. Our silver rings are believed to be the smallest to date, and they can offer a test material for existing theories on metallic nanorings of this heretofore unreached size scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordlander P (2009) The ring: a leitmotif in plasmonics. ACS Nano 3(3):488–492

    Article  CAS  PubMed  Google Scholar 

  2. Ye J, Shioi M, Lodewijks K et al (2010) Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl Phys Lett 97(16):163106

    Article  CAS  Google Scholar 

  3. Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11(1):23–36

    Article  CAS  PubMed  Google Scholar 

  4. Song M, Wang C, Zhao Z et al (2016) Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8(3):1635–1641

    Article  CAS  PubMed  Google Scholar 

  5. Kuchmizhak A, Gurbatov S, Vitrik O et al (2016) Ion-beam assisted laser fabrication of sensing plasmonic nanostructures. Sci Rep 6:19410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48

    Article  CAS  Google Scholar 

  7. Near R, Tabor C, Duan J et al (2012) Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett 12(4):2158–2164

    Article  CAS  PubMed  Google Scholar 

  8. Vogel N, Fischer J, Mohammadi R et al (2011) Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. Nano Lett 11(2):446–454

    Article  CAS  PubMed  Google Scholar 

  9. Cui B, Veres T (2007) Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching. Microelectron Eng 84(5):1544–1547

    Article  CAS  Google Scholar 

  10. Steinmetz NF, Lomonossoff GP, Evans D (2006) Decoration of cowpea mosaic virus with multiple, redox-active, organometallic complexes. Small 2(4):530–533

    Article  CAS  PubMed  Google Scholar 

  11. Dedeo MT, Duderstadt KE, Berger JM et al (2009) Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett 10(1):181–186

    Article  CAS  Google Scholar 

  12. Paavola C, Chan S, Li Y, Mazzarella K, McMillan R, Trent J (2006) A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 17(5):1171

    Article  CAS  Google Scholar 

  13. Zahr OK, Blum AS (2012) Solution phase gold nanorings on a viral protein template. Nano Lett 12(2):629–633

    Article  CAS  PubMed  Google Scholar 

  14. Blum AS, Soto CM, Wilson CD et al (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4(5):867–870

    Article  CAS  Google Scholar 

  15. Khan AA, Fox EK, Górzny MŁ et al (2013) pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir 29(7):2094–2098

    Article  CAS  PubMed  Google Scholar 

  16. Dujardin E, Peet C, Stubbs G et al (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417

    Article  CAS  Google Scholar 

  17. Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B Biol Sci 354(1383):531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kegel WK, Van der Schoot P (2006) Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 91(4):1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim JS, Kim SM, Lee SY et al (2010) Quantitative study of au (III) and Pd (II) ion biosorption on genetically engineered tobacco mosaic virus. J Colloid Interface Sci 342(2):455–461

    Article  CAS  PubMed  Google Scholar 

  20. Górzny MŁ, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20(8):1295–1300

    Article  CAS  Google Scholar 

  21. Balci S, Bittner A, Hahn K et al (2006) Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim Acta 51(28):6251–6257

    Article  CAS  Google Scholar 

  22. Tsukamoto R, Muraoka M, Seki M et al (2007) Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate. Chem Mater 19(10):2389–2391

    Article  CAS  Google Scholar 

  23. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109

    Article  CAS  PubMed  Google Scholar 

  24. Bruckman MA, Kaur G, Lee LA et al (2008) Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem 9(4):519–523

    Article  CAS  PubMed  Google Scholar 

  25. Bruckman MA, Hern S, Jiang K et al (2013) Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J Mater Chem B 1(10):1482–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J, Wang P, Zhao X et al (2014) Charge-transfer interactions for the fabrication of multifunctional viral nanoparticles. Chem Commun 50(91):14125–14128

    Article  CAS  Google Scholar 

  27. Chen L, Zhao X, Lin Y et al (2013) A supramolecular strategy to assemble multifunctional viral nanoparticles. Chem Commun 49(83):9678–9680

    Article  CAS  Google Scholar 

  28. Holder PG, Finley DT, Stephanopoulos N et al (2010) Dramatic thermal stability of virus− polymer conjugates in hydrophobic solvents. Langmuir 26(22):17383–17388

    Article  CAS  PubMed  Google Scholar 

  29. Bruckman MA, Liu J, Koley G et al (2010) Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. J Mater Chem 20(27):5715–5719

    Article  CAS  Google Scholar 

  30. Niu Z, Bruckman M, Kotakadi VS et al (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun (28):3019–3021

    Google Scholar 

  31. Bruckman MA, Soto CM, McDowell H et al (2011) Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS Nano 5(3):1606–1616

    Article  CAS  PubMed  Google Scholar 

  32. Steinmetz NF, Findlay KC, Noel TR et al (2008) Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9(10):1662–1670

    Article  CAS  PubMed  Google Scholar 

  33. Czapar AE, Zheng YR, Riddell IA et al (2016) Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 10(4):4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Finbloom JA, Han K, Aanei IL et al (2016) Stable disk assemblies of a tobacco mosaic virus mutant as nanoscale scaffolds for applications in drug delivery. Bioconjug Chem 27(10):2480–2485

    Article  CAS  Google Scholar 

  35. Tian Y, Gao S, Wu M et al (2016) Tobacco mosaic virus-based 1D nanorod-drug carrier via the integrin-mediated endocytosis pathway. ACS Appl Mater Interfaces 8(17):10800–10807

    Article  CAS  PubMed  Google Scholar 

  36. Shukla S (2016) Serum albumin ‘camouflage’of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 89:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhanushali S, Ghosh P, Ganesh A et al (2015) 1D copper nanostructures: progress, challenges and opportunities. Small 11(11):1232–1252

    Article  CAS  PubMed  Google Scholar 

  38. Royston E, Ghosh A, Kofinas P et al (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24(3):906–912

    Article  CAS  PubMed  Google Scholar 

  39. Lee SY, Choi J, Royston E et al (2006) Deposition of platinum clusters on surface-modified tobacco mosaic virus. J Nanosci Nanotechnol 6(4):974–981

    Article  CAS  PubMed  Google Scholar 

  40. Yang C, Meldon JH, Lee B et al (2014) Investigation on the catalytic reduction kinetics of hexavalent chromium by viral-templated palladium nanocatalysts. Catal Today 233:108–116

    Article  CAS  Google Scholar 

  41. Kim YH, Jung H, Yoon TS et al (2016) Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus Nanotemplate for organic memory device. ECS J Solid State Sci Technol 5(9):Q226–Q230

    Article  CAS  Google Scholar 

  42. Yang C, Manocchi AK, Lee B et al (2010) Viral templated palladium nanocatalysts for dichromate reduction. Appl Catal Environ 93(3):282–291

    CAS  Google Scholar 

  43. Chu S, Gerasopoulos K, Ghodssi R (2016) Tobacco mosaic virus-templated hierarchical Ni/NiO with high electrochemical charge storage performances. Electrochim Acta 220:184–192

    Article  CAS  Google Scholar 

  44. Chen X, Guo J, Gerasopoulos K et al (2012) 3D tin anodes prepared by electrodeposition on a virus scaffold. J Power Sources 211:129–132

    Article  CAS  Google Scholar 

  45. Chen X, Gerasopoulos K, Guo J et al (2011) A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater 21(2):380–387

    Article  CAS  Google Scholar 

  46. Atanasova P, Rothenstein D, Schneider JJ et al (2011) Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors. Adv Mater 23(42):4918–4922

    Article  CAS  PubMed  Google Scholar 

  47. Fan X, Naves L, Siwak N et al (2015) Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26(20):205501

    Article  CAS  PubMed  Google Scholar 

  48. Fraenkel-Conrat H (1957) Degradation of tobacco mosaic virus with acetic acid. Virology 4(1):1–4

    Article  CAS  PubMed  Google Scholar 

  49. Lu B, Stubbs G, Culver JN (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225(1):11–20

    Article  CAS  PubMed  Google Scholar 

  50. Bayram SS, Zahr OK, Del Re J et al (2016) Nanoring formation via in situ photoreduction of silver on a virus scaffold. Nanotechnology 27(48):485603

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Szuchmacher Blum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayram, S., Zahr, O., Del Re, J., Blum, A.S. (2018). TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics