Skip to main content

Peptide Amphiphile Micelles for Vaccine Delivery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Peptide subunit vaccines enable the specific activation of an immune response without the shortcomings of killed or attenuated pathogens. However, peptide subunit vaccines tend to be less immunogenic than those based on whole organisms. To improve peptide immunogenicity, biomaterials-based platforms have been developed. One such platform, the peptide amphiphile micelle platform, has displayed a unique ability to dramatically improve observed immune responses. Here we describe the design, synthesis, characterization, and application of peptide amphiphile micelles to elicit a robust immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Black M, Trent A, Tirrell M, Olive C (2010) Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev Vaccines 9:157–173. https://doi.org/10.1586/erv.09.160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Li W, Joshi M, Singhania S et al (2014) Peptide vaccine: progress and challenges. Vaccine 2:515–536. https://doi.org/10.3390/vaccines2030515

    Article  CAS  Google Scholar 

  3. Flower DR (2013) Designing immunogenic peptides. Nat Chem Biol 9:749–753. https://doi.org/10.1038/nchembio.1383

    Article  PubMed  CAS  Google Scholar 

  4. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7:842–854. https://doi.org/10.1039/C5SC03892H

    Article  PubMed  CAS  Google Scholar 

  5. Trent A, Marullo R, Lin B et al (2011) Structural properties of soluble peptide amphiphile micelles. Soft Matter 7:9572–9582. https://doi.org/10.1039/c1sm05862b

    Article  CAS  Google Scholar 

  6. Black M, Trent A, Kostenko Y et al (2012) Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater 24:3845–3849. https://doi.org/10.1002/adma.201200209

    Article  PubMed  CAS  Google Scholar 

  7. Trent A, Ulery BD, Black MJ et al (2014) Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J 17:380–388. https://doi.org/10.1208/s12248-014-9707-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barrett JC, Ulery BD, Trent A et al (2016) Modular peptide amphiphile micelles improving an antibody-mediated immune response to group A streptococcus. ACS Biomater Sci Eng 3:144–152. https://doi.org/10.1021/acsbiomaterials.6b00422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mora-Solano C, Collier JH (2014) Engaging adaptive immunity with biomaterials. J Mater Chem B 2:2409–2421. https://doi.org/10.1039/c3tb21549k

    Article  PubMed  CAS  Google Scholar 

  10. Liu H, Irvine DJ (2015) Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem 26:791–801. https://doi.org/10.1021/acs.bioconjchem.5b00103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115:11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu H, Moynihan KD, Zheng Y et al (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:519–522. https://doi.org/10.1038/nature12978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wen Y, Collier JH (2015) Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol 35:73–79. https://doi.org/10.1016/j.coi.2015.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Acar H, Srivastava S, Chung EJ et al (2016) Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 110–111:1–57. https://doi.org/10.1016/j.addr.2016.08.006

    Article  CAS  Google Scholar 

  15. Yu YC, Berndt P, Tirrell MV, Fields GB (1996) Self-assembling amphiphiles for construction of protein molecular architecture. J Am Chem Soc 118:12515–12520. https://doi.org/10.1021/ja9627656

    Article  CAS  Google Scholar 

  16. Berndt P, Fields GB, Tirrell M (1995) Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc 117:9515–9522

    Article  CAS  Google Scholar 

  17. Yu YC, Tirrell MV, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987. https://doi.org/10.1021/ja981654z

    Article  CAS  Google Scholar 

  18. Missirlis D, Khant H, Tirrell M (2009) Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. Biochemistry 48:3304–3314. https://doi.org/10.1021/bi802356k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Knorr R, Trzeciak A, Bannwarth W, Gillessen D (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  20. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid-phase peptide-synthesis. Int J Pept Protein Res 36:255–266

    Article  CAS  PubMed  Google Scholar 

  21. Fields CG, Fields GB (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide-synthesis. Tetrahedron Lett 34:6661–6664. https://doi.org/10.1016/S0040-4039(00)61669-6

    Article  CAS  Google Scholar 

  22. Lauer-Fields JL, Minond D, Brew K, Fields GB (2007) Application of topologically constrained mini-proteins as ligands, substrates, and inhibitors. In: Fields GB (ed) Methods in molecular biology: peptide characterization and application protocols. Humana Press, Totowa, NJ, pp 125–166

    Google Scholar 

  23. Rezler EM, Khan DR, Tu R et al (2007) Peptide-mediated targeting of liposomes to tumor cells. In: Fields GB (ed) Methods in molecular biology: peptide characterization and application protocols. Humana Press, Totowa, NJ, pp 269–298

    Google Scholar 

  24. Mata A, Palmer L, Tejeda-Montes E, Stupp SI (2011) Design of biomolecules for nanoengineered biomaterials for regenerative medicine. In: Navarro M, Planell JA (eds) Nanotechnology in regenerative medicine: methods and protocols. Humana Press, Totowa, NJ, pp 39–49

    Google Scholar 

  25. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117:147–157

    Article  CAS  PubMed  Google Scholar 

  26. Wellings DA, Atherton E (1997) Methods in enzymology. Solid-phase peptide synthesis. Academic Press, San Diego

    Google Scholar 

  27. Fields CG, Lloyd DH, Macdonald RL et al (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res 4:95–101

    PubMed  CAS  Google Scholar 

  28. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602. https://doi.org/10.1021/cr100048w

    Article  PubMed  CAS  Google Scholar 

  29. Mlinar LB, Chung EJ, Wonder EA, Tirrell M (2014) Active targeting of early and mid-stage atherosclerotic plaques using self-assembled peptide amphiphile micelles. Biomaterials 35:8678–8686. https://doi.org/10.1016/j.biomaterials.2014.06.054

    Article  PubMed  CAS  Google Scholar 

  30. Kastantin M, Ananthanarayanan B, Karmali P et al (2009) Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 25:7279–7286. https://doi.org/10.1021/la900310k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin BF, Marullo RS, Robb MJ et al (2011) De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly. Nano Lett 11:3946–3950. https://doi.org/10.1021/nl202220q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Greenfield NJ, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  CAS  PubMed  Google Scholar 

  33. Demento SL, Siefert AL, Bandyopadhyay A et al (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 29:294–306. https://doi.org/10.1016/j.tibtech.2011.02.004

    Article  PubMed  CAS  Google Scholar 

  34. Lauer-Fields JL, Nagase H, Fields GB (2000) Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases. J Chromatogr A 890:117–125. https://doi.org/10.1016/S0021-9673(00)00396-4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew V. Tirrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barrett, J.C., Tirrell, M.V. (2018). Peptide Amphiphile Micelles for Vaccine Delivery. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics