Skip to main content

Antibody Modification of p-Aminophenylalanine-Containing Proteins

  • Protocol
  • First Online:
Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

  • 1858 Accesses

Abstract

The use of antibody conjugates for biomedical applications has garnered increased attention due to the ability of antibodies to specifically engage targets of interest. Despite these appealing qualities, the preparation of antibody–protein conjugates remains challenging. Here we detail an approach to attaching targeting antibodies to proteins of interest that combines advances in genetic code expansion and an efficient bioconjugation strategy. As an example, we prepare bacteriophage MS2 viral capsids bearing antibodies on their surfaces for applications in molecular targeting. This technique provides a modular framework to easily prepare antibody–MS2 conjugates in an efficient manner, even at low concentrations of the reacting biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ElSohly AM, Netirojjanakul C, Aanei IL et al (2015) Synthetically modified viral capsids as versatile carriers for use in antibody-based cell targeting. Bioconjug Chem 26:1590–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mehl RA, Anderson JC, Santoro SW et al (2003) Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125:935–939

    Article  CAS  PubMed  Google Scholar 

  3. Carrico ZM, Romanini DW, Mehl RA et al (2008) Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun:1205–1207

    Google Scholar 

  4. Behrens CR, Hooker JM, Obermeyer AC et al (2011) Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. J Am Chem Soc 133:16,398–16,401

    Article  CAS  Google Scholar 

  5. Flenniken ML, Willits DA, Harmsen AL et al (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170

    Article  CAS  PubMed  Google Scholar 

  6. Suci P, Kang S, Gmür R et al (2010) Targeted delivery of a photosensitizer to aggregatibacter actino-mycetemcomitans biofilm. Antimicrob Agents Chemother 54:2489–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Q, Kaltgrad E, Lin T et al (2002) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811

    Article  CAS  PubMed  Google Scholar 

  8. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  CAS  PubMed  Google Scholar 

  9. Kovacs EW, Hooker JM, Romanini DW et al (2007) Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug Chem 18:1140–1147

    Article  CAS  PubMed  Google Scholar 

  10. Tong GJ, Hsiao SC, Carrico ZM et al (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11,174–11,178

    Article  CAS  Google Scholar 

  11. Wu W, Hsiao SC, Carrico ZM et al (2009) Genome-free viral capsids as multivalent carriers for taxol delivery. Angew Chem Int Ed 48:9493–9497

    Article  CAS  Google Scholar 

  12. Garimella PD, Datta A, Romanini DW et al (2011) Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc 133:14,704–14,709

    Article  CAS  Google Scholar 

  13. Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were funded by the DoD Breast Cancer Research Program (Grants BC061995 and W81XWH-14-0400 to M.B.F. and A.M.E., respectively). C.N. was supported by a Howard Hughes Medical Institute International Student Research Fellowship. LC-MS instrumentation was acquired with NIH Grant 1S10RR022393-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

ElSohly, A.M., Netirojjanakul, C., Francis, M.B. (2018). Antibody Modification of p-Aminophenylalanine-Containing Proteins. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics