Skip to main content

Teratology Study Guidelines: An Overview

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

Abstract

Developmental toxicology is a constantly evolving research field which needs to attend to a complex underlying regulatory network. Before entering the market new substances have to be tested for toxic effects on reproduction and development in order to ensure human health and environmental safety. Traditional in vivo mammalian models represent more adequately the intricacy of human development and provide an assessment of the interaction of chemicals on the reproductive system. However, in the last years, the main goal is to reduce the use of vertebrate animals, using those only as last resort. Consequently, the interest in the development and validation of a battery of alternative tests able to cover the various aspects of the reproductive cycle has increased. Reproductive toxicity is probably the most difficult endpoint to be replaced by alternative assays, since it should provide information on mechanisms interactions essential for female and male fertility, and also knowledge on the development of a new human being during its prenatal life. This complexity explains the slow progress in implementing alternatives for reproductive toxicity safety assessments. Alternative test methods may be based on in vitro systems and non-mammalian animal models. Many biological processes have been successfully implemented using in vitro models, opening the possibility to study the interference of teratogenic compounds using these models. Their validation and implementation have lagged behind, in part because of difficulties in establishing their predictability. Nevertheless, the advance toward the process of validation is crucial for a strategy aiming to replace and reduce the use of living animals. Based on the present state of the art, it is not probable that such testing strategies will completely replace the need to assess reproductive toxicity in vivo in the near future, but they contribute to reduce the animal testing and provide important information. In this chapter the approved guidelines for standard methods and alternative methods according to their regulatory and scientific status are enumerated and described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyl RW (2010) In honor of the Teratology Society’s 50th anniversary: the role of Teratology Society members in the development and evolution of in vivo developmental toxicity test guidelines. Birth Defects Res C Embryo Today 90(2):99–102. https://doi.org/10.1002/bdrc.20176

    Article  PubMed  CAS  Google Scholar 

  2. Hu E, Calo G, Guerrini R, Ko MC (2010) Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain 148(1):107–113. https://doi.org/10.1016/j.pain.2009.10.026

    Article  PubMed  CAS  Google Scholar 

  3. Kaltenhauser J, Kneuer C, Marx-Stoelting P et al (2017) Relevance and reliability of experimental data in human health risk assessment of pesticides. Regul Toxicol Pharmacol 88:227–237. https://doi.org/10.1016/j.yrtph.2017.06.010

    Article  PubMed  CAS  Google Scholar 

  4. Bolon B, Barale-Thomas E, Bradley A et al (2010) International recommendations for training future toxicologic pathologists participating in regulatory-type, nonclinical toxicity studies. J Toxicol Pathol 23(3):171–181. https://doi.org/10.1293/tox.23.171

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hood RD (2006) Principles of developmental toxicology revisited. In: Hood RD (ed) Developmental and reproductive toxicology: a practical approach. CRC Press, Boca Raton

    Google Scholar 

  6. Fenner-Crisp PA, Dellarco VL (2016) Key elements for judging the quality of a risk assessment. Environ Health Perspect 124(8):1127–1135. https://doi.org/10.1289/ehp.1510483

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pamis D, Estevan C, Vilanova E, Sogorb MA (2017) Validated and nonvalidated mechanism-based methods for testing development toxicity. In: Gupta RC (ed) Reproductive and developmental toxicology, 2nd edn. Academic Press, London

    Google Scholar 

  8. Settivari RS, Ball N, Murphy L et al (2015) Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing. J Am Assoc Lab Anim Sci 54(2):214–223

    PubMed  PubMed Central  Google Scholar 

  9. Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485. https://doi.org/10.1007/s00204-011-0693-2

    Article  PubMed  CAS  Google Scholar 

  10. Kuster E, Altenburger R (2007) Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio). Chemosphere 68(4):751–760. https://doi.org/10.1016/j.chemosphere.2006.12.093

    Article  PubMed  CAS  Google Scholar 

  11. Edgar BA, Kiehle CP, Schubiger G (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44(2):365–372

    Article  CAS  PubMed  Google Scholar 

  12. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  13. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  14. Hartung T (2009) Toxicology for the twenty-first century. Nature 460(7252):208–212. https://doi.org/10.1038/460208a

    Article  PubMed  CAS  Google Scholar 

  15. Andrew W, Filipe VBJ, Susanne B et al (2014) Alternative methods for regulatory toxicology – a state-of-the-art review. European Commission. https://doi.org/10.2788/11111

  16. Zottoli SJ, Freemer MM (2003) Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfish Carassius auratus. J Exp Biol 206(Pt 17):3015–3029

    Article  CAS  PubMed  Google Scholar 

  17. Chapman KL, Holzgrefe H, Black LE et al (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66(1):88–103. https://doi.org/10.1016/j.yrtph.2013.03.001

    Article  PubMed  CAS  Google Scholar 

  18. Hamm J, Sullivan K, Clippinger AJ et al (2017) Alternative approaches for identifying acute systemic toxicity: moving from research to regulatory testing. Toxicol In Vitro 41:245–259. https://doi.org/10.1016/j.tiv.2017.01.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barrow P (2016) Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol 64:57–63. https://doi.org/10.1016/j.reprotox.2016.03.048

    Article  PubMed  CAS  Google Scholar 

  20. Kleinstreuer NC, Yang J, Berg EL et al (2014) Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32(6):583–591. https://doi.org/10.1038/nbt.2914

    Article  PubMed  CAS  Google Scholar 

  21. Piersma AH (2006) Alternative methods for developmental toxicity testing. Basic Clin Pharmacol Toxicol 98(5):427–431. https://doi.org/10.1111/j.1742-7843.2006.pto_373.x

    Article  PubMed  CAS  Google Scholar 

  22. van Dartel DA, Pennings JL, de la Fonteyne LJ et al (2010) Monitoring developmental toxicity in the embryonic stem cell test using differential gene expression of differentiation-related genes. Toxicol Sci 116(1):130–139. https://doi.org/10.1093/toxsci/kfq127

    Article  PubMed  CAS  Google Scholar 

  23. Schumann J (2010) Teratogen screening: state of the art. Avicenna J Med Biotechnol 2(3):115–121

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Flint OP (1993) In vitro tests for teratogens: desirable endpoints, test batteries and current status of the micromass teratogen test. Reprod Toxicol 7(Supplement 1):103–111. https://doi.org/10.1016/0890-6238(93)90075-I

    Article  PubMed  CAS  Google Scholar 

  25. Marx-Stoelting P, Adriaens E, Ahr H-J et al (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop, vol 37

    Google Scholar 

  26. Spielmann H, Seiler A, Bremer S et al (2006) The practical application of three validated in vitro embryotoxicity tests. The report and recommendations of an ECVAM/ZEBET workshop (ECVAM workshop 57). Altern Lab Anim 34(5):527–538

    PubMed  CAS  Google Scholar 

  27. Wise LD (2013) The ICH S5(R2) guideline for the testing of medicinal agents. Methods Mol Biol 947:1–11. https://doi.org/10.1007/978-1-62703-131-8_1

    Article  PubMed  CAS  Google Scholar 

  28. OECD (2009) Test No. 231: Amphibian metamorphosis assay. OECD Publishing, Paris

    Book  Google Scholar 

  29. Mouche I, Malesic L, Gillardeaux O (2011) FETAX assay for evaluation of developmental toxicity. Methods Mol Biol 691:257–269. https://doi.org/10.1007/978-1-60761-849-2_15

    Article  PubMed  CAS  Google Scholar 

  30. Weigt S, Huebler N, Strecker R et al (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281(1–3):25–36. https://doi.org/10.1016/j.tox.2011.01.004

    Article  PubMed  CAS  Google Scholar 

  31. de Esch C, Slieker R, Wolterbeek A et al (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34(6):545–553. https://doi.org/10.1016/j.ntt.2012.08.006

    Article  PubMed  CAS  Google Scholar 

  32. Strahle U, Scholz S, Geisler R et al (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33(2):128–132. https://doi.org/10.1016/j.reprotox.2011.06.121

    Article  PubMed  CAS  Google Scholar 

  33. Braunbeck T, Kais B, Lammer E et al (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int 22(21):16247–16261. https://doi.org/10.1007/s11356-014-3814-7

    Article  PubMed  CAS  Google Scholar 

  34. Carney EW, Scialli AR, Watson RE, DeSesso JM (2004) Mechanisms regulating toxicant disposition to the embryo during early pregnancy: an interspecies comparison. Birth Defects Res C Embryo Today 72(4):345–360. https://doi.org/10.1002/bdrc.20027

    Article  PubMed  CAS  Google Scholar 

  35. Kochhar DM (1980) In vitro testing of teratogenic agents using mammalian embryos. Teratog Carcinog Mutagen 1(1):63–74

    Article  CAS  PubMed  Google Scholar 

  36. Fantel AG (1982) Culture of whole rodent embryos in teratogen screening. Teratog Carcinog Mutagen 2(3–4):231–242

    Article  CAS  PubMed  Google Scholar 

  37. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399

    Article  PubMed  CAS  Google Scholar 

  38. Christian MS, Hoberman AM, Lewis EM (2006) Perspectives on the developmental and reproductive toxicity guidelines. In: Hood RD (ed) Developmental and reproductive toxicology: a practical approach. CRC Press, Boca Raton

    Google Scholar 

  39. OECD (2001) Test No. 414: Prenatal development toxicity study. OECD Publishing, Paris

    Book  Google Scholar 

  40. OECD (2012) Test No. 443: Extended one-generation reproductive toxicity study. OECD Publishing, Paris

    Book  Google Scholar 

  41. Dietert RR (2009) Developmental immunotoxicology: focus on health risks. Chem Res Toxicol 22(1):17–23. https://doi.org/10.1021/tx800198m

    Article  PubMed  CAS  Google Scholar 

  42. Kraft AD, Aschner M, Cory-Slechta DA et al (2016) Unmasking silent neurotoxicity following developmental exposure to environmental toxicants. Neurotoxicol Teratol 55:38–44. https://doi.org/10.1016/j.ntt.2016.03.005

    Article  PubMed  CAS  Google Scholar 

  43. Solecki R, Kortenkamp A, Bergman A et al (2017) Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Arch Toxicol 91(2):1001–1006. https://doi.org/10.1007/s00204-016-1866-9

    Article  PubMed  CAS  Google Scholar 

  44. Saghir SA, Dorato MA (2016) Reproductive and developmental toxicity testing: examination of the extended one-generation reproductive toxicity study guideline. Regul Toxicol Pharmacol 79:110–117. https://doi.org/10.1016/j.yrtph.2016.03.023

    Article  PubMed  CAS  Google Scholar 

  45. Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37(1):50–59. https://doi.org/10.1002/jat.3357

    Article  PubMed  CAS  Google Scholar 

  46. Lemeire K, Van Merris V, Cortvrindt R (2007) The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology. Toxicol In Vitro 21(7):1348–1353. https://doi.org/10.1016/j.tiv.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  47. Genschow E, Spielmann H, Scholz G et al (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32(3):209–244

    PubMed  CAS  Google Scholar 

  48. Hareng L, Pellizzer C, Bremer S et al (2005) The integrated project ReProTect: a novel approach in reproductive toxicity hazard assessment. Reprod Toxicol 20(3):441–452. https://doi.org/10.1016/j.reprotox.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  49. Spielmann H, Genschow E, Brown NA et al (2004) Validation of the rat limb bud micromass test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32(3):245–274

    PubMed  CAS  Google Scholar 

  50. Selderslaghs IW, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28(3):308–320. https://doi.org/10.1016/j.reprotox.2009.05.004

    Article  PubMed  CAS  Google Scholar 

  51. Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA (2010) Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 89(1):66–77. https://doi.org/10.1002/bdrb.20223

    Article  PubMed  CAS  Google Scholar 

  52. Ito T, Ando H, Suzuki T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350. https://doi.org/10.1126/science.1177319

    Article  PubMed  CAS  Google Scholar 

  53. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44. https://doi.org/10.1038/nrd1606

    Article  CAS  PubMed  Google Scholar 

  54. Fort DJ, Paul RR (2002) Enhancing the predictive validity of frog embryo teratogenesis assay--Xenopus (FETAX). J Appl Toxicol 22(3):185–191. https://doi.org/10.1002/jat.848

    Article  PubMed  CAS  Google Scholar 

  55. La Sala G, Farini D, De Felici M (2010) Estrogenic in vitro assay on mouse embryonic Leydig cells. Int J Dev Biol 54(4):717–722. https://doi.org/10.1387/ijdb.092883gs

    Article  PubMed  CAS  Google Scholar 

  56. Schleh C, Leoni A-L (2013) How to optimize the benefits of computer assisted sperm analysis in experimental toxicology. J Occup Med Toxicol 8:6–6. https://doi.org/10.1186/1745-6673-8-6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Myren M, Mose T, Mathiesen L, Knudsen LE (2007) The human placenta--an alternative for studying foetal exposure. Toxicol In Vitro 21(7):1332–1340. https://doi.org/10.1016/j.tiv.2007.05.011

    Article  PubMed  CAS  Google Scholar 

  58. Mose T, Kjaerstad MB, Mathiesen L et al (2008) Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J Toxicol Environ Health A 71(15):984–991. https://doi.org/10.1080/01932690801934513

    Article  PubMed  CAS  Google Scholar 

  59. Myllynen P, Immonen E, Kummu M, Vahakangas K (2009) Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol 5(12):1483–1499. https://doi.org/10.1517/17425250903304049

    Article  PubMed  CAS  Google Scholar 

  60. Morck TJ, Sorda G, Bechi N et al (2010) Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol 30(1):131–137. https://doi.org/10.1016/j.reprotox.2010.02.007

    Article  PubMed  CAS  Google Scholar 

  61. Cordelli E, Fresegna AM, D’Alessio A et al (2007) ReProComet: a new in vitro method to assess DNA damage in mammalian sperm. Toxicol Sci 99(2):545–552. https://doi.org/10.1093/toxsci/kfm191

    Article  PubMed  CAS  Google Scholar 

  62. Lazzari G, Tessaro I, Crotti G et al (2008) Development of an in vitro test battery for assessing chemical effects on bovine germ cells under the ReProTect umbrella. Toxicol Appl Pharmacol 233(3):360–370. https://doi.org/10.1016/j.taap.2008.08.019

    Article  PubMed  CAS  Google Scholar 

  63. Luciano AM, Franciosi F, Lodde V et al (2010) Transferability and inter-laboratory variability assessment of the in vitro bovine oocyte maturation (IVM) test within ReProTect. Reprod Toxicol 30(1):81–88. https://doi.org/10.1016/j.reprotox.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  64. Tessaro I, Modina SC, Crotti G et al (2015) Transferability and inter-laboratory variability assessment of the in vitro bovine oocyte fertilization test. Reprod Toxicol 51:106–113. https://doi.org/10.1016/j.reprotox.2015.01.001

    Article  PubMed  CAS  Google Scholar 

  65. Yang L, Ho NY, Alshut R et al (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28(2):245–253. https://doi.org/10.1016/j.reprotox.2009.04.013

    Article  PubMed  CAS  Google Scholar 

  66. van Thriel C, Westerink RH, Beste C et al (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33(4):911–924. https://doi.org/10.1016/j.neuro.2011.10.002

    Article  PubMed  CAS  Google Scholar 

  67. Iguchi T, Irie F, Urushitani H et al (2006) Availability of in vitro vitellogenin assay for screening of estrogenic and anti-estrogenic activities of environmental chemicals. Environ Sci 13(3):161–183

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Venâncio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alves-Pimenta, S., Félix, L., Colaço, B., Oliveira, P.A., Venâncio, C. (2018). Teratology Study Guidelines: An Overview. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics