Skip to main content
Book cover

Cellulases pp 301–320Cite as

Homology Modeling for Enzyme Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1796))

Abstract

Homology modeling is a very powerful tool in the absence of atomic structures for understanding the general fold of the enzyme, conserved residues, catalytic tunnel/pocket as well as substrate and product binding sites. This information is useful for structure-assisted enzyme design approach for the development of robust enzymes especially for industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muñoz IG, Ubhayasekera W, Henriksson H et al (2001) Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homology models of the isozymes. J Mol Biol 314(5):1097–1111

    Article  Google Scholar 

  2. Steenbakkers PJM, Ubhayasekera W, Goossen JAM et al (2002) An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp strain E2. Biochem J 365:193–204

    Article  CAS  Google Scholar 

  3. Harhangi HR, Freelove AC, Ubhayasekera W et al (2003) Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp E2 and Piromyces equi. Biochim Biophys Acta 1628(1):30–39

    Article  CAS  Google Scholar 

  4. Sorensen A, Ahring BK, Lübeck M et al (2012) Identifying and characterizing the most significant beta-glucosidase of the novel species Aspergillus saccharolyticus. Can J Microbiol 58(9):1035–1046

    Article  Google Scholar 

  5. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2004) GenBank: update. Nucleic Acids Res 32:D23–D26

    Article  CAS  Google Scholar 

  6. Ubhayasekera W, Muñoz IG, Vassella A et al (2005) Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS J 272(8):1952–1964

    Article  CAS  Google Scholar 

  7. von Ossowski I, Ståhlberg J, Koivula A et al (2003) Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol 333(4):817–829

    Article  Google Scholar 

  8. Becker D, Braet C, Brunner H et al (2001) Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/A224H/L225V/T226A/D262G mutant. Biochem J 356(Pt 1):19–30

    Article  CAS  Google Scholar 

  9. Goedegebuur F, Dankmeyer L, Gualfetti P et al (2017) Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem 292(42):17418–17430

    Article  CAS  Google Scholar 

  10. Momeni MH, Goedegebuur F, Hansson H et al (2014) Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea. Acta Crystallogr D Biol Crystallogr 70(Pt 9):2356–2366

    Article  CAS  Google Scholar 

  11. Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325

    Article  CAS  Google Scholar 

  12. Ubhayasekera W (2005) Structural studies of cellulose and chitin active enzymes, Dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. https://pub.epsilon.slu.se/772/

  13. Momeni MH, Ubhayasekera W, Sandgreen M et al (2015) Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides. FEBS J 282(11):2167–2177

    Article  Google Scholar 

  14. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    Article  CAS  Google Scholar 

  15. Jones TA, Zou JY, Cowan-Jacob SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Article  Google Scholar 

  16. Kleywegt GJ, Zou JY, Kejldgaard M, Jones TA (2001) Around O. In: Rossmann MG, Arnold E (eds) International tables for crystallography, Vol. F. Crystallography of Biological Macromolecules. Kluwer Academic, Dordrecht, pp 353–356

    Google Scholar 

  17. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  Google Scholar 

  18. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  19. Berman HM, Westbrook J, Reng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  20. Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem J 280:309–316

    Article  CAS  Google Scholar 

  21. Kraulis PJ (1991) Molscript - a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  22. Harris M, Jones TA (2001) Molray-a web interface between O and the POV-ray ray tracer. Acta Crystallogr D Biol Crystallogr 57(Pt 8):1201–1203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ubhayasekera, W. (2018). Homology Modeling for Enzyme Design. In: Lübeck, M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7877-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7876-2

  • Online ISBN: 978-1-4939-7877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics