Skip to main content

On-Site Production of Cellulolytic Enzymes by the Sequential Cultivation Method

  • Protocol
  • First Online:
Cellulases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1796))

Abstract

The conversion of renewable lignocellulosic biomass into fuels, chemicals, and high-value materials using the biochemical platform has been considered the most sustainable alternative for the implementation of future biorefineries. However, the high cost of the cellulolytic enzymatic cocktails used in the saccharification step significantly affects the economics of industrial large-scale conversion processes. The on-site production of enzymes, integrated to the biorefinery plant, is being considered as a potential strategy that could be used to reduce costs. In such approach, the microbial production of enzymes can be carried out using the same lignocellulosic biomass as feedstock for fungal development and biofuels production. Most of the microbial cultivation processes for the production of industrial enzymes have been developed using the conventional submerged fermentation. Recently, a sequential solid-state followed by submerged fermentation has been described as a potential alternative cultivation method for cellulolytic enzymes production. This chapter presents the detailed procedure of the sequential cultivation method, which could be employed for the on-site production of the cellulolytic enzymes required to convert lignocellulosic biomass into simple sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moshkelani M, Marinova M, Perrier M, Paris J (2013) The forest biorefinery and its implementation in the pulp and paper industry: energy overview. Appl Therm Eng 50:1427–1436

    Article  CAS  Google Scholar 

  2. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  3. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotech 64:137–145

    Article  CAS  Google Scholar 

  4. Mohan SV, Nikhil GN, Chiranjeevi P et al (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12

    Article  Google Scholar 

  5. Mu DY, Seager T, Rao PS, Zhao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manag 46:565–578

    Article  Google Scholar 

  6. Lopes MSG (2015) Engineering biological systems toward a sustainable bioeconomy. J Ind Microbiol Biotech 42:813–838

    Article  CAS  Google Scholar 

  7. Heux S, Meynial-Salles I, O'Donohue MJ, Dumon C (2015) White biotechnology: state of the art strategies for the development of biocatalysts for biorefining. Biotechn Adv 33:1653–1670

    Article  CAS  Google Scholar 

  8. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioproducts Biorefining Biofpr 10:164–174

    Article  CAS  Google Scholar 

  9. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  Google Scholar 

  10. Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng 39:133–140

    Article  Google Scholar 

  11. Delabona P, Pirota R, Codima C et al (2012) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37:243–250

    Article  CAS  Google Scholar 

  12. King BC, Waxman KD, Nenni NV et al (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:14

    Article  Google Scholar 

  13. Guerriero G, Hausman JF, Strauss J et al (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  Google Scholar 

  14. Pirota R, Tonelotto M, Delabona PD et al (2015) Characterization of fungi isolated from the Amazon region for the potential of biomass-degrading enzymes production. Cienc Rural 45:1606–1612

    Article  Google Scholar 

  15. Florencio C, Cunha FM, Badino AC et al (2016) Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: enzyme production for sugarcane bagasse hydrolysis. Enzym Microb Technol 90:53–60

    Article  CAS  Google Scholar 

  16. Delabona PD, Cota J, Hoffmam ZB et al (2013) Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and alpha-L-arabinofuranosidase. Bioresour Technol 131:500–507

    Article  Google Scholar 

  17. Pinto Braga CM, Delabona PS, Lima DJS et al (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour Technol 170:316–324

    Article  Google Scholar 

  18. Thomas L, Parameswaran B, Pandey A (2016) Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp for bioethanol production. Renew Energy 98:9–15

    Article  CAS  Google Scholar 

  19. Pirota R, Tonelotto M, Delabona PS et al (2016) Bioprocess developments for cellulase production by Aspergillus oryzae cultivated under solid-state fermentation. Braz J Chem Eng 33:21–31

    Article  CAS  Google Scholar 

  20. Delabona PD, Lima DJ, Robl D et al (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotech 43:617–626

    Article  CAS  Google Scholar 

  21. Pirota RDPB, Delabona PS, Farinas CS (2014) Simplification of the biomass to ethanol conversion process by using the whole medium of filamentous fungi cultivated under solid-state fermentation. Bioenergy Res 7:744–752

    Article  CAS  Google Scholar 

  22. Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2015) Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process Biochem 50:1701–1709

    Article  CAS  Google Scholar 

  23. Cunha FM, Esperanca MN, Florencio C et al (2015) Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: effects of operational variables and cultivation method. Biochem Eng J 97:32–39

    Article  CAS  Google Scholar 

  24. Rodriguez-Zuniga UF, Couri S, Neto VB et al (2013) Integrated strategies to enhance cellulolytic enzyme production using an instrumented bioreactor for solid-state fermentation of sugarcane bagasse. Bioenergy Res 6:142–152

    Article  CAS  Google Scholar 

  25. Delabona P, Farinas C, da Silva M et al (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521

    Article  CAS  Google Scholar 

  26. Sorensen A, Teller PJ, Lubeck PS, Ahring BK (2011) Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Appl Biochem Biotechnol 164:1058–1070

    Article  CAS  Google Scholar 

  27. Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:11

    Article  Google Scholar 

  28. Rana V, Eckard AD, Teller P, Ahring BK (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289

    Article  CAS  Google Scholar 

  29. van den Brink J, Maitan-Alfenas GP, Zou G et al (2014) Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 9:1329–1338

    Article  Google Scholar 

  30. Payne CM, Knott BC, Mayes HB et al (2015) Fungal Cellulases. Chem Rev 115:1308–1448

    Article  CAS  Google Scholar 

  31. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  Google Scholar 

  32. Zhang Y, Himmel M, Mielenz J (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  33. Lynd L, Weimer P, van Zyl W, Pretorius I (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  34. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  35. Cannella D, Mollers KB, Frigaard NU et al (2016) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun 7:8

    Article  Google Scholar 

  36. Rodriguez-Zuniga UF, Cannella D, Giordano RD et al (2015) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem 17:2896–2903

    Article  CAS  Google Scholar 

  37. Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188

    Article  CAS  Google Scholar 

  38. Kuhad RC, Deswal D, Sharma S et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272

    Article  CAS  Google Scholar 

  39. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  40. Singhania RR, Sukumaran RK, Patel AK et al (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  41. Delabona PD, Pirota R, Codima CA et al (2013) Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Ind Crop Prod 42:236–242

    Article  CAS  Google Scholar 

  42. Cunha FM, Vasconcellos VM, Florencio C et al (2017) On-site production of enzymatic cocktails using a non-conventional fermentation method with agro-industrial residues as renewable feedstocks. Waste Biomass Valorization 8:517–526

    Article  CAS  Google Scholar 

  43. Cunha FM, Kreke T, Badino AC et al (2014) Liquefaction of sugarcane bagasse for enzyme production. Bioresour Technol 172:249–252

    Article  CAS  Google Scholar 

  44. Cunha FM, Esperanca MN, Zangirolami TC et al (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274

    Article  CAS  Google Scholar 

  45. Florencio C, Cunha FM, Badino AC, Farinas CS (2015) Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl Biochem Biotechnol 175:1389–1402

    Article  CAS  Google Scholar 

  46. Cunha FM, Badino AC, Farinas CS (2017) Effect of a novel method for in-house cellulase production on 2G ethanol yields. Biocatal Agric Biotechnol 9:224–229

    Google Scholar 

  47. Mandels M, Sternberg D (1976) Recent advances in cellulase technology. J Ferment Technol 54:267–286

    Google Scholar 

  48. Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  49. Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  50. Florencio C, Couri S, Farinas CS (2012) Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res:7. https://doi.org/10.1155/2012/793708

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Embrapa, CNPq (Process 401182/2014-2), CAPES, and FAPESP (Process 2014/19000-3 and 2016/10636-8) (all from Brazil) for financial support, and the students and technicians from Embrapa Instrumentation for their invaluable contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane S. Farinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farinas, C.S., Florencio, C., Badino, A.C. (2018). On-Site Production of Cellulolytic Enzymes by the Sequential Cultivation Method. In: Lübeck, M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7877-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7876-2

  • Online ISBN: 978-1-4939-7877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics