Skip to main content

Options and Considerations When Using a Yeast One-Hybrid System

  • Protocol
  • First Online:
Two-Hybrid Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1794))

Abstract

Comprehensive mapping of protein–DNA interactions is essential to uncover the mechanisms involved in gene regulation. However, the data generated has been sparse given the number of regulatory elements and transcription factors (TFs) encoded in the genomes of metazoan organisms. Yeast one-hybrid (Y1H) assays provide a powerful “DNA-centered” method, complementary to “TF-centered” methods such as chromatin immunoprecipitation, to identify the TFs that can bind a DNA sequence of interest. Here, we present different technical variations that should be considered when using a Y1H system, including the type of DNA sequence to test, source of TF clones, as well as types of vectors and screening format. Finally, we discuss limitations of the assay and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kummerfeld SK, Teichmann SA (2006) DBD: a transcription factor prediction database. Nucleic Acids Res 34(Database issue):D74–D81. https://doi.org/10.1093/nar/gkj131

    Article  PubMed  CAS  Google Scholar 

  2. Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, Walhout AJ (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6(13):R110. https://doi.org/10.1186/gb-2005-6-13-r110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42. https://doi.org/10.1186/1471-2105-8-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263. https://doi.org/10.1038/nrg2538

    Article  PubMed  CAS  Google Scholar 

  5. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 365(1–2):279–299. https://doi.org/10.1007/s11010-012-1269-z

    Article  PubMed  CAS  Google Scholar 

  6. Xie Z, Hu S, Qian J, Blackshaw S, Zhu H (2011) Systematic characterization of protein-DNA interactions. Cell Mol Life Sci 68(10):1657–1668. https://doi.org/10.1007/s00018-010-0617-y

    Article  PubMed  CAS  Google Scholar 

  7. Arda HE, Walhout AJ (2010) Gene-centered regulatory networks. Brief Funct Genomics 9(1):4–12. https://doi.org/10.1093/bfgp/elp049

    Article  PubMed  CAS  Google Scholar 

  8. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJ (2006) A gene-centered C. elegans protein-DNA interaction network. Cell 125(6):1193–1205. https://doi.org/10.1016/j.cell.2006.04.038

    Article  PubMed  CAS  Google Scholar 

  9. Fuxman Bass JI, Pons C, Kozlowski L, Reece-Hoyes JS, Shrestha S, Holdorf AD, Mori A, Myers CL, Walhout AJ (2016) A gene-centered C. elegans protein-DNA interaction network provides a framework for functional predictions. Mol Syst Biol 12(10):884. https://doi.org/10.15252/msb.20167131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fuxman Bass JI, Sahni N, Shrestha S, Garcia-Gonzalez A, Mori A, Bhat N, Yi S, Hill DE, Vidal M, Walhout AJ (2015) Human gene-centered transcription factor networks for enhancers and disease variants. Cell 161(3):661–673. https://doi.org/10.1016/j.cell.2015.03.003

    Article  PubMed  CAS  Google Scholar 

  11. Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):571–575. https://doi.org/10.1038/nature14099

    Article  CAS  PubMed  Google Scholar 

  12. Li JJ, Herskowitz I (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262(5141):1870–1874

    Article  CAS  PubMed  Google Scholar 

  13. Reece-Hoyes JS, Deplancke B, Barrasa MI, Hatzold J, Smit RB, Arda HE, Pope PA, Gaudet J, Conradt B, Walhout AJ (2009) The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors. Nucleic Acids Res 37(11):3689–3698. https://doi.org/10.1093/nar/gkp232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, Peng J, Weile J, Karras GI, Wang Y, Kovacs IA, Kamburov A, Krykbaeva I, Lam MH, Tucker G, Khurana V, Sharma A, Liu YY, Yachie N, Zhong Q, Shen Y, Palagi A, San-Miguel A, Fan C, Balcha D, Dricot A, Jordan DM, Walsh JM, Shah AA, Yang X, Stoyanova AK, Leighton A, Calderwood MA, Jacob Y, Cusick ME, Salehi-Ashtiani K, Whitesell LJ, Sunyaev S, Berger B, Barabasi AL, Charloteaux B, Hill DE, Hao T, Roth FP, Xia Y, Walhout AJ, Lindquist S, Vidal M (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161(3):647–660. https://doi.org/10.1016/j.cell.2015.04.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fuxman Bass JI, Reece-Hoyes JS, Walhout AJ (2016) Generating bait strains for yeast one-hybrid assays. Cold Spring Harb Protoc 2016;(12):pdb prot088948. https://doi.org/10.1101/pdb.prot088948

  16. Reece-Hoyes JS, Pons C, Diallo A, Mori A, Shrestha S, Kadreppa S, Nelson J, Diprima S, Dricot A, Lajoie BR, Ribeiro PS, Weirauch MT, Hill DE, Hughes TR, Myers CL, Walhout AJ (2013) Extensive rewiring and complex evolutionary dynamics in a C. elegans multiparameter transcription factor network. Mol Cell 51(1):116–127. https://doi.org/10.1016/j.molcel.2013.05.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fuxman Bass JI, Tamburino AM, Mori A, Beittel N, Weirauch MT, Reece-Hoyes JS, Walhout AJ (2014) Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters. Nucleic Acids Res 42(1):153–162. https://doi.org/10.1093/nar/gkt858

    Article  PubMed  CAS  Google Scholar 

  18. Hens K, Feuz JD, Isakova A, Iagovitina A, Massouras A, Bryois J, Callaerts P, Celniker SE, Deplancke B (2011) Automated protein-DNA interaction screening of Drosophila regulatory elements. Nat Methods 8(12):1065–1070. https://doi.org/10.1038/nmeth.1763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80(6):949–957

    Article  CAS  PubMed  Google Scholar 

  20. Reece-Hoyes JS, Diallo A, Lajoie B, Kent A, Shrestha S, Kadreppa S, Pesyna C, Dekker J, Myers CL, Walhout AJ (2011) Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nat Methods 8(12):1059–1064. https://doi.org/10.1038/nmeth.1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fuxman Bass JI, Reece-Hoyes JS, Walhout AJ (2016) Performing yeast one-hybrid library screens. Cold Spring Harb Protoc 2016;(12):pdb prot088955. https://doi.org/10.1101/pdb.prot088955

  22. Inouye C, Remondelli P, Karin M, Elledge S (1994) Isolation of a cDNA encoding a metal response element binding protein using a novel expression cloning procedure: the one hybrid system. DNA Cell Biol 13(7):731–742. https://doi.org/10.1089/dna.1994.13.731

    Article  PubMed  CAS  Google Scholar 

  23. Deplancke B, Dupuy D, Vidal M, Walhout AJ (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14(10B):2093–2101. https://doi.org/10.1101/gr.2445504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz JD, Raghav SK, Simicevic J, Deplancke B (2013) A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol Syst Biol 9:682. https://doi.org/10.1038/msb.2013.38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gaudinier A, Zhang L, Reece-Hoyes JS, Taylor-Teeples M, Pu L, Liu Z, Breton G, Pruneda-Paz JL, Kim D, Kay SA, Walhout AJ, Ware D, Brady SM (2011) Enhanced Y1H assays for Arabidopsis. Nat Methods 8(12):1053–1055. https://doi.org/10.1038/nmeth.1750

    Article  PubMed  CAS  Google Scholar 

  26. Rajagopala SV, Hughes KT, Uetz P (2009) Benchmarking yeast two-hybrid systems using the interactions of bacterial motility proteins. Proteomics 9(23):5296–5302. https://doi.org/10.1002/pmic.200900282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reboul J, Vaglio P, Rual JF, Lamesch P, Martinez M, Armstrong CM, Li S, Jacotot L, Bertin N, Janky R, Moore T, Hudson JR Jr, Hartley JL, Brasch MA, Vandenhaute J, Boulton S, Endress GA, Jenna S, Chevet E, Papasotiropoulos V, Tolias PP, Ptacek J, Snyder M, Huang R, Chance MR, Lee H, Doucette-Stamm L, Hill DE, Vidal M (2003) C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 34(1):35–41. https://doi.org/10.1038/ng1140

    Article  PubMed  Google Scholar 

  28. Vermeirssen V, Deplancke B, Barrasa MI, Reece-Hoyes JS, Arda HE, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Brent MR, Walhout AJ (2007) Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping. Nat Methods 4(8):659–664. https://doi.org/10.1038/nmeth1063

    Article  PubMed  CAS  Google Scholar 

  29. Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, Yu H, Sahalie JM, Murray RR, Roncari L, de Smet AS, Venkatesan K, Rual JF, Vandenhaute J, Cusick ME, Pawson T, Hill DE, Tavernier J, Wrana JL, Roth FP, Vidal M (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6(1):91–97. https://doi.org/10.1038/nmeth.1281

    Article  PubMed  CAS  Google Scholar 

  30. Walhout AJM (2011) What does biologically meaningful mean? A perspective on gene regulatory network validation. Genome Biol 12:109

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tripathi P, Carvallo M, Hamilton EE, Preuss S, Kay SA (2017) Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proc Natl Acad Sci U S A 114(1):172–177. https://doi.org/10.1073/pnas.1616459114

    Article  PubMed  CAS  Google Scholar 

  32. Yachie N, Petsalaki E, Mellor JC, Weile J, Jacob Y, Verby M, Ozturk SB, Li S, Cote AG, Mosca R, Knapp JJ, Ko M, Yu A, Gebbia M, Sahni N, Yi S, Tyagi T, Sheykhkarimli D, Roth JF, Wong C, Musa L, Snider J, Liu YC, Yu H, Braun P, Stagljar I, Hao T, Calderwood MA, Pelletier L, Aloy P, Hill DE, Vidal M, Roth FP (2016) Pooled-matrix protein interaction screens using Barcode Fusion Genetics. Mol Syst Biol 12(4):863. https://doi.org/10.15252/msb.20156660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kok Ann Gan for critically reading the manuscript. This work was supported by NIH grant GM114296 to J.I.F.B. J.S. was supported by the NIH HTP grant 5T32HL007501-34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Fuxman Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sewell, J.A., Fuxman Bass, J.I. (2018). Options and Considerations When Using a Yeast One-Hybrid System. In: Oñate-Sánchez, L. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 1794. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7871-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7871-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7870-0

  • Online ISBN: 978-1-4939-7871-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics