Skip to main content

Translating Human Genetics into Novel Drug Targets

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1793))

Abstract

The most important promise of the human genome sequencing project is the identification of the genetic cause of devastating human diseases and the subsequent deliver of novel drug therapies to treat these diseases with high unmet medical need. In the last 10 years we have successfully identified hundreds of genetic loci associated with many traits and diseases. The translation of these findings into novel therapies is not straightforward and poses challenges that are usually overlooked in traditional gene mapping. This chapter describes some of the most common challenges and opportunities to use human genetics to identify and validate novel drug targets.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson MR, Tipney H, Painter JL et al (2015) The support of human genetic evidence for approved drug indications. Nat Genet 47(8):856–860. https://doi.org/10.1038/ng.3314

    Article  PubMed  CAS  Google Scholar 

  2. Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. https://doi.org/10.1093/nar/gkt1229

    Article  PubMed  CAS  Google Scholar 

  3. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273(5281):1516–1517

    Article  CAS  PubMed  Google Scholar 

  4. International HapMap Consortium (2003) The international hapmap project. Nature 426(6968):789–796. https://doi.org/10.1038/nature02168

    Article  CAS  Google Scholar 

  5. Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med 360(17):1696–1698. https://doi.org/10.1056/NEJMp0806284

    Article  PubMed  CAS  Google Scholar 

  6. Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501. https://doi.org/10.1038/ng.2249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lango Allen H, Estrada K, Lettre G et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838. https://doi.org/10.1038/nature09410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  PubMed Central  CAS  Google Scholar 

  9. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. https://doi.org/10.1126/science.1069424

    Article  PubMed  CAS  Google Scholar 

  10. Cortes A, Brown MA (2011) Promise and pitfalls of the Immunochip. Arthritis Res Ther 13(1):101. https://doi.org/10.1186/ar3204

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naitza S, Porcu E, Steri M et al (2012) A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet 8(1):e1002480. https://doi.org/10.1371/journal.pgen.1002480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81. https://doi.org/10.1038/nature15394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang J, Lee SH, Goddard ME et al (2013) Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. Methods Mol Biol 1019:215–236. https://doi.org/10.1007/978-1-62703-447-0_9

    Article  PubMed  CAS  Google Scholar 

  14. Maller JB, McVean G, Wellcome Trust Case Control Consortium et al (2012) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 44(12):1294–1301. https://doi.org/10.1038/ng.2435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Benner C, Spencer CC, Havulinna AS et al (2016) FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32(10):1493–1501. https://doi.org/10.1093/bioinformatics/btw018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li YI, van de Geijn B, Raj A et al (2016) RNA splicing is a primary link between genetic variation and disease. Science 352(6285):600–604. https://doi.org/10.1126/science.aad9417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. GTEx Consortium (2015) Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348 (6235):648–660. doi:https://doi.org/10.1126/science.1262110

  18. Wallace C, Rotival M, Cooper JD et al (2012) Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet 21(12):2815–2824. https://doi.org/10.1093/hmg/dds098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hormozdiari F, Bunt MVD, Segre AV et al (2016) Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet 99(6):1245–1260. https://doi.org/10.1101/065037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  21. Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://doi.org/10.1038/nature14878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12(8):581–594. https://doi.org/10.1038/nrd4051

    Article  PubMed  CAS  Google Scholar 

  23. Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165. https://doi.org/10.1038/ng1509

    Article  PubMed  CAS  Google Scholar 

  24. Giugliano RP, Desai NR, Kohli P et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380(9858):2007–2017. https://doi.org/10.1016/S0140-6736(12)61770-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Raal F, Scott R, Somaratne R et al (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation 126(20):2408–2417. https://doi.org/10.1161/CIRCULATIONAHA.112.144055

    Article  PubMed  CAS  Google Scholar 

  26. Sevigny J, Chiao P, Bussiere T et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537(7618):50–56. https://doi.org/10.1038/nature19323

    Article  PubMed  CAS  Google Scholar 

  27. Ramirez A, van der Flier WM, Herold C et al (2014) SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer's disease. Hum Mol Genet 23(24):6644–6658. https://doi.org/10.1093/hmg/ddu372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12):1452–1458. https://doi.org/10.1038/ng.2802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Samocha KE, Robinson EB, Sanders SJ et al (2014) A framework for the interpretation of de novo mutation in human disease. Nat Genet 46(9):944–950. https://doi.org/10.1038/ng.3050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hurle MR, Nelson MR, Agarwal P et al (2016) Trial watch: impact of genetically supported target selection on R&D productivity. Nat Rev Drug Discov 15(9):596–597. https://doi.org/10.1038/nrd.2016.164

    Article  PubMed  CAS  Google Scholar 

  32. Ramanan VK, Risacher SL, Nho K et al (2014) APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 19(3):351–357. https://doi.org/10.1038/mp.2013.19

    Article  PubMed  CAS  Google Scholar 

  33. Loh PR, Danecek P, Palamara PF et al (2016) Reference-based phasing using the haplotype reference consortium panel. Nat Genet 48(11):1443–1448. https://doi.org/10.1038/ng.3679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Karol Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Estrada, K., Alzheimer’s Disease Neuroimaging Initiative. (2018). Translating Human Genetics into Novel Drug Targets. In: Evangelou, E. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 1793. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7868-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7868-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7867-0

  • Online ISBN: 978-1-4939-7868-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics