Skip to main content

From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1793))

Abstract

Along with family-based studies, dozens of genome-wide association studies (GWAS) have clearly identified the genetic basis of common diseases and complex traits. There are currently hundreds of single nucleotide polymorphisms (SNP) associated with human disease as well as biochemical and physiological phenotypes. Although this is only the tip of the iceberg, we are now confronted with a general lack of understanding of how these trait-associated variants act. How do these genetic changes lead to overt clinical phenotypes? What are the molecular mechanisms? Can we harness this information to develop better preventive and curative strategies? Current efforts are shifting to focus on these questions as we move from identifying variants to understanding their effects. Here I provide a broad overview of the main technical concerns and current bottlenecks as we approach this new phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678. https://doi.org/10.1038/nature05911

    Article  CAS  Google Scholar 

  2. Visscher PM, Brown MA, McCarthy MI et al (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145. https://doi.org/10.1038/nrg3118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Strange A, Capon F, Spencer CC et al (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42(11):985–990. https://doi.org/10.1038/ng.694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Craddock N, Hurles ME, Cardin N et al (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720. https://doi.org/10.1038/nature08979

    Article  PubMed  CAS  Google Scholar 

  6. Abecasis GR, Altshuler D, Auton A et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. https://doi.org/10.1038/nature09534

    Article  PubMed  CAS  Google Scholar 

  7. Dickson SP, Wang K, Krantz I et al (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8(1):e1000294. https://doi.org/10.1371/journal.pbio.1000294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Anderson CA, Soranzo N, Zeggini E et al (2011) Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol 9(1):e1000580. https://doi.org/10.1371/journal.pbio.1000580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wojczynski MK, Tiwari HK (2008) Definition of phenotype. Adv Genet 60:75–105. https://doi.org/10.1016/s0065-2660(07)00404-x

    Article  PubMed  Google Scholar 

  10. Dunham I, Kundaje A, Aldred SF et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  11. Graur D, Zheng Y, Price N et al (2013) On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5(3):578–590. https://doi.org/10.1093/gbe/evt028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A 110(14):5294–5300. https://doi.org/10.1073/pnas.1221376110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Millikan RG (1984) Language, thought, and other biological categories: new foundations for realism. In: Bradford book. MIT Press, Cambridge

    Google Scholar 

  14. Doolittle WF, Brunet TD, Linquist S et al (2014) Distinguishing between "function" and "effect" in genome biology. Genome Biol Evol 6(5):1234–1237. https://doi.org/10.1093/gbe/evu098

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kellis M, Wold B, Snyder MP et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111(17):6131–6138. https://doi.org/10.1073/pnas.1318948111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fairfax BP, Makino S, Radhakrishnan J et al (2012) Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44(5):502–510. https://doi.org/10.1038/ng.2205. [doi]. ng.2205 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fairfax BP, Humburg P, Makino S et al (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343(6175):1246949. https://doi.org/10.1126/science.1246949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Degner JF, Pai AA, Pique-Regi R et al (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482(7385):390–394. https://doi.org/10.1038/nature10808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. GTex Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  20. Maurano MT, Humbert R, Rynes E et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195. https://doi.org/10.1126/science.1222794. [doi]. science.1222794 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gusev A, Lee SH, Trynka G et al (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95(5):535–552. https://doi.org/10.1016/j.ajhg.2014.10.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Parkes M, Cortes A, van Heel DA et al (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14(9):661–673. https://doi.org/10.1038/nrg3502

    Article  PubMed  CAS  Google Scholar 

  23. Stergachis AB, Haugen E, Shafer A et al (2013) Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342(6164):1367–1372. https://doi.org/10.1126/science.1243490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Birnbaum RY, Clowney EJ, Agamy O et al (2012) Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22(6):1059–1068. https://doi.org/10.1101/gr.133546.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hieter P, Boguski M (1997) Functional genomics: it's all how you read it. Science 278(5338):601–602

    Article  CAS  PubMed  Google Scholar 

  26. Weinstein JN (1998) Fishing expeditions. Science 282(5389):628–629

    Article  CAS  PubMed  Google Scholar 

  27. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y

    Google Scholar 

  28. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334. https://doi.org/10.1038/nrg3686

    Article  PubMed  CAS  Google Scholar 

  29. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    Article  PubMed  CAS  Google Scholar 

  31. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311. https://doi.org/10.1038/nrg3899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Komor AC, Badran AH, Liu DR (2016) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1–2):20–36. https://doi.org/10.1016/j.cell.2016.10.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dixit A, Parnas O, Li B et al (2016) Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–1866.e1817. https://doi.org/10.1016/j.cell.2016.11.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Adamson B, Norman TM, Jost M et al (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167(7):1867–1882.e1821. https://doi.org/10.1016/j.cell.2016.11.048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jaitin DA, Weiner A, Yofe I et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167(7):1883–1896.e1815. https://doi.org/10.1016/j.cell.2016.11.039

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149. https://doi.org/10.1038/nature20565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910. https://doi.org/10.1056/NEJMoa1300662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial. Nature 535(7613):476–477. https://doi.org/10.1038/nature.2016.20302

    Article  PubMed  CAS  Google Scholar 

  40. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109. https://doi.org/10.1016/j.cell.2014.02.045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55. https://doi.org/10.1016/j.cell.2013.09.011

    Article  PubMed  CAS  Google Scholar 

  42. Krueger F, Kreck B, Franke A et al (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9(2):145–151. https://doi.org/10.1038/nmeth.1828

    Article  PubMed  CAS  Google Scholar 

  43. Boyle AP, Davis S, Shulha HP, Meltzer P et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322. https://doi.org/10.1016/j.cell.2007.12.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. https://doi.org/10.1038/nature05874

    Article  PubMed  CAS  Google Scholar 

  45. Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. https://doi.org/10.1038/nature11232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852. https://doi.org/10.1038/nrg3306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14(6):390–403. https://doi.org/10.1038/nrg3454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Davies JO, Telenius JM, McGowan SJ et al (2016) Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 13(1):74–80. https://doi.org/10.1038/nmeth.3664

    Article  PubMed  CAS  Google Scholar 

  50. Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46(2):205–212. https://doi.org/10.1038/ng.2871

    Article  PubMed  CAS  Google Scholar 

  51. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64. https://doi.org/10.1038/nature08497. [doi]. nature08497 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schwartzman O, Tanay A (2015) Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet 16(12):716–726. https://doi.org/10.1038/nrg3980

    Article  PubMed  CAS  Google Scholar 

  55. Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490. https://doi.org/10.1038/nature14590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64. https://doi.org/10.1038/nature12593

    Article  PubMed  CAS  Google Scholar 

  57. Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3(9):e3148. https://doi.org/10.1371/journal.pone.0003148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen X, Shen Y, Draper W et al (2016) ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat Methods 13(12):1013–1020. https://doi.org/10.1038/nmeth.4031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147(6):1408–1419. https://doi.org/10.1016/j.cell.2011.11.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Falconer DSDS, Mackay TFC, Falconer D et al (1996) Introduction to quantitative genetics, 4th ed edn. Pearson, Prentice Hall, Harlow

    Google Scholar 

  61. Mackay TF (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2(1):11–20. https://doi.org/10.1038/35047544

    Article  PubMed  CAS  Google Scholar 

  62. Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. https://doi.org/10.1093/nar/gkt1229

    Article  PubMed  CAS  Google Scholar 

  63. Gallone G, Haerty W, Disanto G et al (2016) Identification of genetic variants affecting vitamin D receptor binding and associations with autoimmune disease. Hum Mol Genet 26(11):2164–2176

    Article  CAS  Google Scholar 

  64. Kilpinen H, Waszak SM, Gschwind AR et al (2013) Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342(6159):744–747. https://doi.org/10.1126/science.1242463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F et al (2013) Extensive variation in chromatin states across humans. Science 342(6159):750–752. https://doi.org/10.1126/science.1242510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. McVicker G, van de Geijn B, Degner JF et al (2013) Identification of genetic variants that affect histone modifications in human cells. Science 342(6159):747–749. https://doi.org/10.1126/science.1242429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Westra HJ, Peters MJ, Esko T et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45(10):1238–1243. https://doi.org/10.1038/ng.2756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48. https://doi.org/10.1038/nrg3575

    Article  PubMed  CAS  Google Scholar 

  69. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664. https://doi.org/10.1126/science.1069492

    Article  PubMed  CAS  Google Scholar 

  70. Gaffney DJ, Veyrieras JB, Degner JF et al (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biol 13(1):R7. https://doi.org/10.1186/gb-2012-13-1-r7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee MN, Ye C, Villani AC et al (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343(6175):1246980. https://doi.org/10.1126/science.1246980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Song L, Huang SC, Wise A et al (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354(6312). https://doi.org/10.1126/science.aag1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rhee EP, Ho JE, Chen MH et al (2013) A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 18(1):130–143. https://doi.org/10.1016/j.cmet.2013.06.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kettunen J, Tukiainen T, Sarin AP et al (2012) Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 44(3):269–276. https://doi.org/10.1038/ng.1073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–550. https://doi.org/10.1038/ng.2982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wu L, Candille SI, Choi Y et al (2013) Variation and genetic control of protein abundance in humans. Nature 499(7456):79–82. https://doi.org/10.1038/nature12223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Altshuler DM, Gibbs RA, Peltonen L et al (2007) Population genomics of human gene expression. Nat Genet 39(10):1217–1224. https://doi.org/10.1038/ng2142

    Article  CAS  Google Scholar 

  78. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, Montgomery S, Tavare S, Deloukas P, Dermitzakis ET (2007) Population genomics of human gene expression. Nat Genet 39(10):1217–1224. https://doi.org/10.1038/ng2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Auton A, Brooks LD, Durbin RM et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  PubMed  CAS  Google Scholar 

  80. Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81. https://doi.org/10.1038/nature15394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Stunnenberg HG, Hirst M (2016) The international human epigenome consortium: a blueprint for scientific collaboration and discovery. Cell 167(5):1145–1149. https://doi.org/10.1016/j.cell.2016.11.007

    Article  PubMed  CAS  Google Scholar 

  82. Kundaje A, Meuleman W, Ernst J et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–330. https://doi.org/10.1038/nature14248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. https://doi.org/10.1038/nature12787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bernstein BE, Stamatoyannopoulos JA, Costello JF et al (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048. https://doi.org/10.1038/nbt1010-1045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464(7291):993–998. https://doi.org/10.1038/nature08987. [doi]. nature08987 [pii]

    Article  PubMed  CAS  Google Scholar 

  86. Teytelman L, Thurtle DM, Rine J et al (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110(46):18602–18607. https://doi.org/10.1073/pnas.1316064110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhang L, Zhang K, Prandl R et al (2004) Detecting DNA-binding of proteins in vivo by UV-crosslinking and immunoprecipitation. Biochem Biophys Res Commun 322(3):705–711. https://doi.org/10.1016/j.bbrc.2004.07.202

    Article  PubMed  CAS  Google Scholar 

  88. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. https://doi.org/10.1038/nature07488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. O'Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31(1):76–82

    Article  CAS  PubMed  Google Scholar 

  90. Kasinathan S, Orsi GA, Zentner GE et al (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11(2):203–209. https://doi.org/10.1038/nmeth.2766

    Article  PubMed  CAS  Google Scholar 

  91. Fisher WW, Li JJ, Hammonds AS et al (2012) DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in drosophila. Proc Natl Acad Sci U S A 109(52):21330–21335. https://doi.org/10.1073/pnas.1209589110

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen J, Zhang Z, Li L et al (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156(6):1274–1285. https://doi.org/10.1016/j.cell.2014.01.062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Voong LN, Xi L, Sebeson AC et al (2016) Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell 167(6):1555–1570.e1515. https://doi.org/10.1016/j.cell.2016.10.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Walter K, Min JL, Huang J et al (2015) The UK10K project identifies rare variants in health and disease. Nature 526(7571):82–90. https://doi.org/10.1038/nature14962

    Article  PubMed  CAS  Google Scholar 

  95. Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://doi.org/10.1038/nature14878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Claussnitzer M, Dankel SN, Klocke B et al (2014) Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 156(1–2):343–358. https://doi.org/10.1016/j.cell.2013.10.058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Trynka G, Sandor C, Han B et al (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45(2):124–130. https://doi.org/10.1038/ng.2504

    Article  PubMed  CAS  Google Scholar 

  98. Tehranchi AK, Myrthil M, Martin T et al (2016) Pooled ChIP-Seq links variation in transcription factor binding to complex disease risk. Cell 165(3):730–741. https://doi.org/10.1016/j.cell.2016.03.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Small KS, Todorcevic M, Civelek M et al (2018) Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet. 50(4):572-80. doi:10.1038/s41588-018-0088-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Billings LK, Florez JC (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 1212:59–77. https://doi.org/10.1111/j.1749-6632.2010.05838.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. https://doi.org/10.1038/nature14177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Nelson MR, Wegmann D, Ehm MG et al (2012) An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337(6090):100–104. https://doi.org/10.1126/science.1217876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Harper AR, Topol EJ (2012) Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 30(11):1117–1124. https://doi.org/10.1038/nbt.2424

    Article  PubMed  CAS  Google Scholar 

  104. Lappalainen T, Sammeth M, Friedlander MR et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468):506–511. https://doi.org/10.1038/nature12531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wild CP (2005) Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14(8):1847–1850. https://doi.org/10.1158/1055-9965.epi-05-0456

    Article  CAS  Google Scholar 

  106. Holmes E, Loo RL, Stamler J et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396–400. https://doi.org/10.1038/nature06882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Gibson G, Powell JE, Marigorta UM (2015) Expression quantitative trait locus analysis for translational medicine. Genome Med 7(1):60. https://doi.org/10.1186/s13073-015-0186-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Berlanga-Taylor, A. J., Plant, Dahl, A. et al (2017) Effect of vitamin D supplementation on biomarkers of inflammation and immune function: functional genomics analysis of the BEST-D trial. bioRxiv. https://doi.org/10.1101/217612

    Google Scholar 

  109. Elliott P, Vergnaud AC, Singh D et al (2014) The airwave health monitoring study of police officers and staff in great Britain: rationale, design and methods. Environ Res 134:280–285. https://doi.org/10.1016/j.envres.2014.07.025

    Article  PubMed  CAS  Google Scholar 

  110. Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am funded by a Medical Research Council Intermediate Fellowship through the UK MED-BIO Programme (MR/L01632X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Berlanga-Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Berlanga-Taylor, A.J. (2018). From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results. In: Evangelou, E. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 1793. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7868-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7868-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7867-0

  • Online ISBN: 978-1-4939-7868-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics