Skip to main content

Fluorescence In Situ Hybridization (FISH) in Multiple Myeloma

  • Protocol
  • First Online:
Multiple Myeloma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1792))

Abstract

The application of fluorescence in situ hybridization (FISH) technology in diagnosis and molecular classification of cancer-risk has become an essential tool in the proceeding of personalized therapy. In multiple myeloma, the precise FISH detection of numerical and structural genetic aberrations can be carried out on metaphase chromosome spreads, interphase nuclei, and formalin fixed paraffin-embedded (FFPE) tissues. To dissect highly complex cancer genomes, a broad variety of novel DNA probes, which outpace supplies from commercial resources on the market, are also crucial to the advanced translational researches. Here, we provide the protocols for the creation of custom-made DNA probes and for conducting hybridizations on various targeting cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das KC, Aikat BK (1967) Chromosomal abnormalities in multiple myeloma. Blood 30(6):738–748

    Article  CAS  Google Scholar 

  2. Philip P, Drivsholm A (1976) G-banding analysis of complex aneuploidy in multiple myeloma bone marrow cells. Blood 47(1):69–77

    Article  CAS  Google Scholar 

  3. Liang W, Hopper JE, Rowley JD (1979) Karyotypic abnormalities and clinical aspects of patients with multiple myeloma and related paraproteinemic disorders. Cancer 44(2):630–644

    Article  CAS  Google Scholar 

  4. Dewald GW, Kyle RA, Hicks GA, Greipp PR (1985) The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 66(2):380–390

    Article  CAS  Google Scholar 

  5. Gould J, Alexanian R, Goodacre A, Pathak S, Hecht B, Barlogie B (1988) Plasma cell karyotype in multiple myeloma. Blood 71(2):453–456

    Article  CAS  Google Scholar 

  6. Flactif M, Zandecki M, Lai JL, Bernardi F, Obein V, Bauters F, Facon T (1995) Interphase fluorescence in situ hybridization (FISH) as a powerful tool for the detection of aneuploidy in multiple myeloma. Leukemia 9(12):2109–2114

    CAS  PubMed  Google Scholar 

  7. Lai JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M, Morel P, Jouet JP, Bauters F, Facon T (1995) Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 85(9):2490–2497

    Article  CAS  Google Scholar 

  8. Calasanz MJ, Cigudosa JC, Odero MD, Ferreira C, Ardanaz MT, Fraile A, Carrasco JL, Sole F, Cuesta B, Gullon A (1997) Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations. Genes Chromosomes Cancer 18(2):84–93

    Article  CAS  Google Scholar 

  9. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, Bergsagel PL (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264. https://doi.org/10.1038/ng0797-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feinman R, Sawyer J, Hardin J, Tricot G (1997) Cytogenetics and molecular genetics in multiple myeloma. Hematol Oncol Clin North Am 11(1):1–25

    Article  CAS  Google Scholar 

  11. Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A, Morris C, Tricot G, Epstein J, Barlogie B (2000) High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood 96(4):1505–1511

    Article  CAS  Google Scholar 

  12. Keung YK, Yung C, Wong JW, Shah F, Cobos E, Tonk V (1998) Unusual presentation of multiple myeloma with “jumping translocation” involving 1q21. A case report and review of the literature. Cancer Genet Cytogenet 106(2):135–139

    Article  CAS  Google Scholar 

  13. Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B (1998) Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 91(5):1732–1741

    Article  CAS  Google Scholar 

  14. Sawyer JR, Tricot G, Lukacs JL, Binz RL, Tian E, Barlogie B, Shaughnessy J Jr (2005) Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosomes Cancer 42(1):95–106. https://doi.org/10.1002/gcc.20109

    Article  CAS  PubMed  Google Scholar 

  15. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, Hollmig K, Zangarri M, Pineda-Roman M, van Rhee F, Cavallo F, Burington B, Crowley J, Tricot G, Barlogie B, Shaughnessy JD Jr (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732. https://doi.org/10.1182/blood-2006-03-009910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian E, Sawyer JR, Heuck CJ, Zhang Q, van Rhee F, Barlogie B, Epstein J (2014) In multiple myeloma, 14q32 translocations are nonrandom chromosomal fusions driving high expression levels of the respective partner genes. Genes Chromosomes Cancer 53(7):549–557. https://doi.org/10.1002/gcc.22165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11(3):483–496. https://doi.org/10.1101/gr.169601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erming Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, E. (2018). Fluorescence In Situ Hybridization (FISH) in Multiple Myeloma. In: Heuck, C., Weinhold, N. (eds) Multiple Myeloma. Methods in Molecular Biology, vol 1792. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7865-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7865-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7864-9

  • Online ISBN: 978-1-4939-7865-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics