Skip to main content

In Vivo Introduction of Transgenes into Mouse Sciatic Nerve Cells Using Viral Vectors

  • Protocol
Myelin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1791))

Abstract

Myelinated fibers are essential for the rapid and efficient propagation of nerve information throughout the body. These fibers result from an intimate crosstalk between myelinating glia and the myelinated axons and, because it is difficult to fully reproduce these interactions in vitro, the basic molecular mechanisms that regulate myelination, demyelination, and remyelination remain unclear. Schwann cells produce myelin in the peripheral nervous system (PNS) and remain associated with the axons of peripheral neurons throughout axonal migration to the target. In order to investigate more closely the biology of myelinated fibers, we developed a local transgenesis approach based on the injection of engineered viral vectors in the sciatic nerve of mice to locally transduce peripheral nerve cells. This approach represents an alternative to germline modifications as it facilitates and speed up the investigation of peripheral nerve biology in vivo. Indeed the protocol we describe here requires just 3 weeks to complete. The injection of engineered viral vectors in the sciatic nerve of mice is a reproducible and straightforward method for introducing exogenous factors into myelinating Schwann cells and myelinated axons in vivo in order to investigate specific molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suter U, Scherer SS (2003) Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 4:714–726. https://doi.org/10.1038/nrn1196

    Article  PubMed  CAS  Google Scholar 

  2. McGoldrick P, Joyce PI, Fisher EMC, Greensmith L (2013) Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1832:1421–1436. https://doi.org/10.1016/j.bbadis.2013.03.012

    Article  PubMed  CAS  Google Scholar 

  3. Höke A (2012) Animal models of peripheral neuropathies. Neurotherapeutics 9:262–269. https://doi.org/10.1007/s13311-012-0116-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Davey RA, MacLean HE (2006) Current and future approaches using genetically modified mice in endocrine research. Am J Physiol Endocrinol Metab 291:E429. https://doi.org/10.1152/ajpendo.00124.2006

    Article  PubMed  CAS  Google Scholar 

  5. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  PubMed  CAS  Google Scholar 

  6. Sung YH, Baek I-J, Seong JK et al (2012) Mouse genetics: catalogue and scissors. BMB Rep 45:686–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690. https://doi.org/10.1038/nrn1743

    Article  PubMed  CAS  Google Scholar 

  8. Viader A, Sasaki Y, Kim S et al (2013) Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77:886–898. https://doi.org/10.1016/j.neuron.2013.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nave K-A (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252. https://doi.org/10.1038/nature09614

    Article  PubMed  CAS  Google Scholar 

  10. Cotter L, Ozçelik M, Jacob C et al (2010) Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–1418. https://doi.org/10.1126/science.1187735

    Article  PubMed  CAS  Google Scholar 

  11. Ozçelik M, Cotter L, Jacob C et al (2010) Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci 30:4120–4131. https://doi.org/10.1523/JNEUROSCI.5185-09.2010

    Article  PubMed  CAS  Google Scholar 

  12. Fernando RN, Cotter L, Perrin-Tricaud C et al (2016) Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/hippo pathway. Nat Commun 7:12186. https://doi.org/10.1038/ncomms12186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Perrin-Tricaud C, Rutishauser U, Tricaud N (2007) P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci 35:120–129. https://doi.org/10.1016/j.mcn.2007.02.010

    Article  PubMed  CAS  Google Scholar 

  14. Tricaud N, Perrin-Tricaud C, Brusés JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25:3259–3269. https://doi.org/10.1523/JNEUROSCI.5168-04.2005

    Article  PubMed  CAS  Google Scholar 

  15. Glatzel M, Flechsig E, Navarro B et al (2000) Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc Natl Acad Sci U S A 97:442–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guénard V, Schweitzer B, Flechsig E et al (1999) Effective gene transfer of lacZ and P0 into Schwann cells of P0-deficient mice. Glia 25:165–178

    Article  PubMed  Google Scholar 

  17. He T-C, Zhou S, da Costa LT et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci 95:2509–2514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.T. is grateful for the support of European research council (FP7-IDEAS-ERC 311610) and ATIP-Avenir program. R.F. work was supported by Fondation pour la Recherche Médicale and the Marie-Curie fellowship program. G.H. work has benefited from support by the Labex EpiGenMed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Tricaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Van Hameren, G., Gonzalez, S., Fernando, R.N., Perrin-Tricaud, C., Tricaud, N. (2018). In Vivo Introduction of Transgenes into Mouse Sciatic Nerve Cells Using Viral Vectors. In: Woodhoo, A. (eds) Myelin. Methods in Molecular Biology, vol 1791. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7862-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7862-5_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7861-8

  • Online ISBN: 978-1-4939-7862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics