Advertisement

In Vivo Bacterial Imaging Using Bioluminescence

  • Mariette Barbier
  • Justin Bevere
  • F. Heath DamronEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)

Abstract

Bacterial luminescence allows for noninvasive continuous monitoring of promoter activity in a wide range of model systems. This chapter details various examples of use of the lux reporter system to measure promoter activity in bacteria using the vector pUC18T-mini-Tn7T-lux-Tp. Here, we describe the construction of promoter fusions with bacterial luciferase, and how to quantify promoter activity in real time in vitro and in vivo in plant, insect, and murine infection models.

Key words

Bacteria Bioluminescence In vivo imaging Reporter system Promoter activity Bacterial pathogenesis Pathogen-host interaction 

References

  1. 1.
    Baldwin TO, Christopher JA, Raushel FM et al (1995) Structure of bacterial luciferase. Curr Opin Struct Biol 5:798–809CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Choi K-H, Schweizer HP (2006) Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161.  https://doi.org/10.1038/nprot.2006.24CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Choi K-H, Gaynor JB, White KG et al (2005) A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443–448.  https://doi.org/10.1038/nmeth765CrossRefPubMedGoogle Scholar
  4. 4.
    Damron FH, McKenney ES, Barbier M et al (2013) Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl Environ Microbiol 79:4149–4153.  https://doi.org/10.1128/AEM.00640-13CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Choi K-H, Mima T, Casart Y et al (2008) Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol 74:1064–1075.  https://doi.org/10.1128/AEM.02430-07CrossRefPubMedGoogle Scholar
  6. 6.
    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497CrossRefGoogle Scholar
  7. 7.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weiner ZP, Ernst SM, Boyer AE et al (2014) Circulating lethal toxin decreases the ability of neutrophils to respond to Bacillus anthracis. Cell Microbiol 16:504–518.  https://doi.org/10.1111/cmi.12232CrossRefPubMedGoogle Scholar
  9. 9.
    Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397.  https://doi.org/10.1016/j.mimet.2005.06.001CrossRefPubMedGoogle Scholar
  10. 10.
    Sambrook DWJR (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  11. 11.
    Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    López CM, Rholl DA, Trunck LA, Schweizer HP (2009) Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. Appl Environ Microbiol 75:6496–6503.  https://doi.org/10.1128/AEM.01669-09CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mariette Barbier
    • 1
  • Justin Bevere
    • 1
  • F. Heath Damron
    • 1
    Email author
  1. 1.Department of Microbiology, Immunology and Cell BiologyWest Virginia University School of MedicineMorgantownUSA

Personalised recommendations