Skip to main content

Fluorescence Imaging of Mycobacterial Infection in Live Mice Using Fluorescent Protein-Expressing Strains

  • Protocol
  • First Online:
Reporter Gene Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1790))

Abstract

Fluorescence imaging has been applied to various areas of biological research, including studies of physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. In this chapter, we describe methods of fluorescent imaging applied to examination of subcutaneous and pulmonary mycobacterial infections in an animal model. Since slow growth of Mycobacterium tuberculosis (Mtb) hinders development of new diagnostics, therapeutics, and vaccines for tuberculosis (TB), we developed fluorescent protein (FP) expressing mycobacterial strains for in vivo imaging, which can be used to track bacterial location and to quantitate bacterial load directly in living animals. After comparison of imaging data using strains expressing different fluorescent proteins, we found that strains expressing L5-tdTomato display the greatest fluorescence. Here, we describe detailed protocols for tdTomato-labeled M. bovis BCG imaging in real time for subcutaneous and pulmonary infections in living mice. These procedures allow rapid and accurate determination of bacterial numbers in live mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2015) Global tuberculosis control 2014. WHO, Geneva

    Google Scholar 

  2. Glickman MS, Jacobs WR Jr (2001) Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104(4):477–485

    Article  PubMed  CAS  Google Scholar 

  3. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3):463–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zumla A, Raviglione M, Hafner R, von Reyn CF (2013) Tuberculosis. N Engl J Med 368(8):745–755. https://doi.org/10.1056/NEJMra1200894

    Article  PubMed  CAS  Google Scholar 

  5. Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK (2006) Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 69(3):160–167. https://doi.org/10.1002/jemt.20284

    Article  PubMed  Google Scholar 

  6. Wacker SA, Oswald F, Wiedenmann J, Knochel W (2007) A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev Dynam 236(2):473–480. https://doi.org/10.1002/dvdy.20955

    Article  CAS  Google Scholar 

  7. Hoffman RM (2005) Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging. J Biomed Opt 10(4):41202. https://doi.org/10.1117/1.1992485

    Article  CAS  PubMed  Google Scholar 

  8. Stewart CN Jr (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24(4):155–162. doi:S0167-7799(06)00030-8 [pii]10.1016/j.tibtech.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  9. Seitz G, Warmann SW, Fuchs J, Mau-Holzmann UA, Ruck P, Heitmann H, Hoffman RM, Mahrt J, Muller GA, Wessels JT (2006) Visualization of xenotransplanted human rhabdomyosarcoma after transfection with red fluorescent protein. J Pediatr Surg 41(8):1369–1376. https://doi.org/10.1016/j.jpedsurg.2006.04.039

    Article  PubMed  Google Scholar 

  10. Winnard PT Jr, Kluth JB, Raman V (2006) Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia 8(10):796–806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  PubMed  CAS  Google Scholar 

  12. Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77(1):1–12. https://doi.org/10.1007/s00253-007-1131-5

    Article  PubMed  CAS  Google Scholar 

  13. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  PubMed  CAS  Google Scholar 

  14. Kong Y, Yang D, Cirillo SL, Li S, Akin A, Francis KP, Maloney T, Cirillo JD (2016) Application of fluorescent protein expressing strains to evaluation of anti-tuberculosis therapeutic efficacy in vitro and in vivo. PLoS One 11(3):e0149972. https://doi.org/10.1371/journal.pone.0149972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xu H, Rice BW (2009) In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J Biomed Opt 14(6):064011. https://doi.org/10.1117/1.3258838

    Article  PubMed  Google Scholar 

  16. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746

    Article  PubMed  CAS  Google Scholar 

  17. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101(48):16745–16749. https://doi.org/10.1073/pnas.0407752101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kredel S, Oswald F, Nienhaus K, Deuschle K, Rocker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4(2):e4391. https://doi.org/10.1371/journal.pone.0004391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16(11):1169–1179. https://doi.org/10.1016/j.chembiol.2009.10.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chu J, Haynes RD, Corbel SY, Li P, Gonzalez-Gonzalez E, Burg JS, Ataie NJ, Lam AJ, Cranfill PJ, Baird MA, Davidson MW, Ng HL, Garcia KC, Contag CH, Shen K, Blau HM, Lin MZ (2014) Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat Methods 11(5):572–578. https://doi.org/10.1038/nmeth.2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5(3):e9823. https://doi.org/10.1371/journal.pone.0009823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zelmer A, Carroll P, Andreu N, Hagens K, Mahlo J, Redinger N, Robertson BD, Wiles S, Ward TH, Parish T, Ripoll J, Bancroft GJ, Schaible UE (2012) A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother 67(8):1948–1960. https://doi.org/10.1093/jac/dks161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kong Y, Akin AR, Francis KP, Zhang N, Troy TL, Xie H, Rao J, Cirillo SLG, Cirillo JD (2011) Whole-body imaging of infection using fluorescence. Curr Protoc Microbiol Chapter 2:Unit 2C.3. https://doi.org/10.1002/9780471729259.mc02c03s21

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, Y., Cirillo, J.D. (2018). Fluorescence Imaging of Mycobacterial Infection in Live Mice Using Fluorescent Protein-Expressing Strains. In: Dubey, P. (eds) Reporter Gene Imaging. Methods in Molecular Biology, vol 1790. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7860-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7860-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7858-8

  • Online ISBN: 978-1-4939-7860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics