Advertisement

Fluorescence Imaging of Mycobacterial Infection in Live Mice Using Fluorescent Protein-Expressing Strains

  • Ying KongEmail author
  • Jeffrey D. Cirillo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)

Abstract

Fluorescence imaging has been applied to various areas of biological research, including studies of physiological, neurological, oncological, cell biological, molecular, developmental, immunological, and infectious processes. In this chapter, we describe methods of fluorescent imaging applied to examination of subcutaneous and pulmonary mycobacterial infections in an animal model. Since slow growth of Mycobacterium tuberculosis (Mtb) hinders development of new diagnostics, therapeutics, and vaccines for tuberculosis (TB), we developed fluorescent protein (FP) expressing mycobacterial strains for in vivo imaging, which can be used to track bacterial location and to quantitate bacterial load directly in living animals. After comparison of imaging data using strains expressing different fluorescent proteins, we found that strains expressing L5-tdTomato display the greatest fluorescence. Here, we describe detailed protocols for tdTomato-labeled M. bovis BCG imaging in real time for subcutaneous and pulmonary infections in living mice. These procedures allow rapid and accurate determination of bacterial numbers in live mice.

Key words

Mycobacteria Fluorescent proteins Noninvasive imaging tdTomato 

References

  1. 1.
    WHO (2015) Global tuberculosis control 2014. WHO, GenevaGoogle Scholar
  2. 2.
    Glickman MS, Jacobs WR Jr (2001) Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104(4):477–485CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3):463–496CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zumla A, Raviglione M, Hafner R, von Reyn CF (2013) Tuberculosis. N Engl J Med 368(8):745–755.  https://doi.org/10.1056/NEJMra1200894CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK (2006) Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 69(3):160–167.  https://doi.org/10.1002/jemt.20284CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wacker SA, Oswald F, Wiedenmann J, Knochel W (2007) A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev Dynam 236(2):473–480.  https://doi.org/10.1002/dvdy.20955CrossRefGoogle Scholar
  7. 7.
    Hoffman RM (2005) Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging. J Biomed Opt 10(4):41202.  https://doi.org/10.1117/1.1992485CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart CN Jr (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24(4):155–162. doi:S0167-7799(06)00030-8 [pii]10.1016/j.tibtech.2006.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Seitz G, Warmann SW, Fuchs J, Mau-Holzmann UA, Ruck P, Heitmann H, Hoffman RM, Mahrt J, Muller GA, Wessels JT (2006) Visualization of xenotransplanted human rhabdomyosarcoma after transfection with red fluorescent protein. J Pediatr Surg 41(8):1369–1376.  https://doi.org/10.1016/j.jpedsurg.2006.04.039CrossRefPubMedGoogle Scholar
  10. 10.
    Winnard PT Jr, Kluth JB, Raman V (2006) Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia 8(10):796–806CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317CrossRefPubMedGoogle Scholar
  12. 12.
    Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77(1):1–12.  https://doi.org/10.1007/s00253-007-1131-5CrossRefPubMedGoogle Scholar
  13. 13.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909CrossRefPubMedGoogle Scholar
  14. 14.
    Kong Y, Yang D, Cirillo SL, Li S, Akin A, Francis KP, Maloney T, Cirillo JD (2016) Application of fluorescent protein expressing strains to evaluation of anti-tuberculosis therapeutic efficacy in vitro and in vivo. PLoS One 11(3):e0149972.  https://doi.org/10.1371/journal.pone.0149972CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu H, Rice BW (2009) In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. J Biomed Opt 14(6):064011.  https://doi.org/10.1117/1.3258838CrossRefPubMedGoogle Scholar
  16. 16.
    Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746CrossRefPubMedGoogle Scholar
  17. 17.
    Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101(48):16745–16749.  https://doi.org/10.1073/pnas.0407752101CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kredel S, Oswald F, Nienhaus K, Deuschle K, Rocker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4(2):e4391.  https://doi.org/10.1371/journal.pone.0004391CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16(11):1169–1179.  https://doi.org/10.1016/j.chembiol.2009.10.009CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chu J, Haynes RD, Corbel SY, Li P, Gonzalez-Gonzalez E, Burg JS, Ataie NJ, Lam AJ, Cranfill PJ, Baird MA, Davidson MW, Ng HL, Garcia KC, Contag CH, Shen K, Blau HM, Lin MZ (2014) Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat Methods 11(5):572–578.  https://doi.org/10.1038/nmeth.2888CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5(3):e9823.  https://doi.org/10.1371/journal.pone.0009823CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zelmer A, Carroll P, Andreu N, Hagens K, Mahlo J, Redinger N, Robertson BD, Wiles S, Ward TH, Parish T, Ripoll J, Bancroft GJ, Schaible UE (2012) A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother 67(8):1948–1960.  https://doi.org/10.1093/jac/dks161CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kong Y, Akin AR, Francis KP, Zhang N, Troy TL, Xie H, Rao J, Cirillo SLG, Cirillo JD (2011) Whole-body imaging of infection using fluorescence. Curr Protoc Microbiol Chapter 2:Unit 2C.3.  https://doi.org/10.1002/9780471729259.mc02c03s21CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Immunology, and BiochemistryUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of Microbial Pathogenesis and ImmunologyTexas A & M University Health Science CenterBryanUSA

Personalised recommendations