Practical Guidelines for Cerenkov Luminescence Imaging with Clinically Relevant Isotopes

  • Nikunj B. Bhatt
  • Darpan N. Pandya
  • William A. Dezarn
  • Frank C. Marini
  • Dawen Zhao
  • William H. Gmeiner
  • Pierre L. Triozzi
  • Thaddeus J. WadasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)


Cerenkov luminescence imaging (CLI) is a relatively new imaging modality that utilizes conventional optical imaging instrumentation to detect Cerenkov radiation derived from standard and often clinically approved radiotracers. Its research versatility, low cost, and ease of use have increased its popularity within the molecular imaging community and at institutions that are interested in conducting radiotracer-based molecular imaging research, but that lack the necessary resources and infrastructure. Here, we provide a description of the materials and procedures necessary to conduct a Cerenkov luminescence imaging experiment using a variety of imaging instrumentation, radionuclides, and animal models.

Key words

Cerenkov luminescence imaging Isotope Radiation Radiotherapy Antibody Nanoparticle Peptide Reporter gene expression Optical imaging 



This work was supported by NIH grant NIH P30 CA012197, DoD grant W81XWH-13-1-0125, and The United States Department of Energy Office of Science-Isotope Program in the Office of Nuclear Physics.


  1. 1.
    Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(6):18N–21NPubMedGoogle Scholar
  2. 2.
    James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965CrossRefPubMedGoogle Scholar
  3. 3.
    Chen ZY, Wang YX, Lin Y et al (2014) Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int 2014:819324–819334PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boschi F, Spinelli AE (2014) Cerenkov luminescence imaging at a glance. Curr Mol Imaging 3(2):106–117CrossRefGoogle Scholar
  5. 5.
    Chin PTK, Welling MM, Meskers SCJ (2013) Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging 40(8):1283–1291CrossRefPubMedGoogle Scholar
  6. 6.
    Das S, Thorek Daniel LJ, Grimm J (2014) Cerenkov imaging. Adv Cancer Res 124:213–234CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mitchell GS, Gill RK, Boucher DL et al (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci 369(1955):4605–4619CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thorek DL, Robertson R, Bacchus WA et al (2012) Cerenkov imaging - a new modality for molecular imaging. Am J Nucl Med Mol Imaging 2(2):163–173PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruggiero A, Holland JP, Lewis JS et al (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51(7):1123–1130CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cerenkov P (1937) Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys Rev 52:378–379CrossRefGoogle Scholar
  11. 11.
    Cerenkov P (1934) Visible emission of clean liquids by action of gamma irradiation. Dokl Akad Nauk SSSR 2(2):451–454Google Scholar
  12. 12.
    Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J Nucl Med 52(12):2009–2018CrossRefPubMedGoogle Scholar
  13. 13.
    Ackerman NL, Graves EE (2012) The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides. Phy Med Biol 57(3):771–783CrossRefGoogle Scholar
  14. 14.
    Gill RK, Mitchell GS, Cherry SR (2015) Computed Cerenkov luminescence yields for radionuclides used in biology and medicine. Phys Med Biol 60(11):1–18CrossRefGoogle Scholar
  15. 15.
    Lewis MA, Kodibagkar VD, Oz OK et al (2010) On the potential for molecular imaging with Cerenkov luminescence. Opt Lett 35(23):3889–3891CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thorek DL, Ogirala A, Beattie BJ et al (2013) Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat Med 19(10):1345–1350CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Robertson R, Germanos MS, Li C et al (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54(16):N355–N365CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grootendorst MR, Cariati M, Pinder SE et al (2017) Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging - a first-in-human feasibility study. J Nucl Med 58(6):891–898. Scholar
  19. 19.
    Grootendorst MR, Cariati M, Purushotham A et al (2016) Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging 4(5):353–366CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Holland JP, Normand G, Ruggiero A et al (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(3):177–186CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu H, Cao X, Kang F et al (2015) Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol 25(6):1814–1822CrossRefPubMedGoogle Scholar
  22. 22.
    Hu Z, Ma X, Qu X et al (2012) Three-dimensional noninvasive monitoring Iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS One 7(5):e37623CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kothapalli S-R, Liu H, Liao JC et al (2012) Endoscopic imaging of Cerenkov luminescence. Biomed Optics Express 3(6):1215–1225CrossRefGoogle Scholar
  24. 24.
    Spinelli AE, Ferdeghini M, Cavedon C et al (2013) First human Cerenkography. J Biomed Optics 18(2):20502CrossRefGoogle Scholar
  25. 25.
    Jeong SY, Hwang M-H, Kim JE et al (2011) Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study. Endocr J 58(7):575–583CrossRefPubMedGoogle Scholar
  26. 26.
    Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15(6):060505CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wolfs E, Holvoet B, Gijsbers R et al (2014) Optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for PET and Cerenkov luminescence imaging. PLoS One 9(4):e94833CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang W, Qin W, Hu Z et al (2012) Comparison of Cerenkov luminescence imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 cells. Nucl Med Biol 39(7):948–953CrossRefPubMedGoogle Scholar
  29. 29.
    Fan D, Zhang X, Zhong L et al (2015) 68Ga-Labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of Orthotopic human Glioblastoma. Bioconjug Chem 26(6):1054–1060CrossRefPubMedGoogle Scholar
  30. 30.
    Kim D-H, Choe Y-S, Choi J-Y et al (2011) Binding of 2-[18F]fluoro-CP-118,954 to mouse acetylcholinesterase: microPET and ex vivo Cerenkov luminescence imaging studies. Nucl Med Biol 38(4):541–547CrossRefPubMedGoogle Scholar
  31. 31.
    Natarajan A, Habte F, Liu H et al (2013) Evaluation of 89Zr-rituximab tracer by Cerenkov luminescence imaging and correlation with PET in a humanized transgenic mouse model to image NHL. Mol Imaging Biol 15(4):468–475CrossRefPubMedGoogle Scholar
  32. 32.
    Robertson R, Germanos MS, Manfredi MG et al (2011) Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J Nucl Med 52(11):1764–1769CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang X, Kuo C, Moore A et al (2013) In vivo optical imaging of interscapular brown adipose tissue with 18F-FDG via Cerenkov luminescence imaging. PLoS One 8(4):e62007CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Black KCL, Zhegalova N, Sultan DH et al (2016) In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and ̂Cerenkov imaging. Biomaterials 98:53–63CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Guo W, Sun X, Jacobson O et al (2015) Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 9(1):488–495CrossRefPubMedGoogle Scholar
  36. 36.
    Lee SB, Ahn SB, Lee S-W et al (2016) Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mat 8(6):e281–e288CrossRefGoogle Scholar
  37. 37.
    Lee SB, Yoon GS, Lee S-W et al (2016) Combined positron emission tomography and Cerenkov luminescence imaging of sentinel lymph nodes using PEGylated radionuclide-embedded gold nanoparticles. Small 12(35):4894–4901CrossRefPubMedGoogle Scholar
  38. 38.
    Ma X, Kang F, Xu F et al (2013) Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+−doped rare-earth microparticles. PLoS One 8(10):e77926CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Thorek DLJ, Das S, Grimm J (2014) Molecular imaging using nanoparticle quenchers of cerenkov luminescence. Small 10(18):3729–3734CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Y, Liu Y, Luehmann H et al (2013) Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett 13(2):581–585CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Balkin ER, Kenoyer A, Orozco JJ et al (2014) In vivo localization of 90Y and 177Lu Radioimmunoconjugates using Cerenkov luminescence imaging in a disseminated murine Leukemia model. Cancer Res 74(20):5846–5854CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chakravarty R, Chakraborty S, Sarma HD et al (2016) 90Y/177Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation. J Label Compd Radiopharm 59(9):354–363. Scholar
  43. 43.
    Pandya DN, Hantgan R, Budzevich MM et al (2016) Preliminary therapy evaluation of 225Ac-DOTA-c(RGDyK) demonstrates that cerenkov radiation derived from 225Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics 6(5):698–709CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wright CL, Zhang J, Tweedle MF (2015) Theranostic imaging of Yttrium-90. BioMed Res Inter 2015:481279Google Scholar
  45. 45.
    Maier FC, Schmitt J, Maurer A et al (2016) Correlation between positron emission tomography and Cerenkov luminescence imaging in vivo and ex vivo using 64Cu-labeled antibodies in a neuroblastoma mouse model. Oncotarget 7(41):67403–67411. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nikunj B. Bhatt
    • 1
  • Darpan N. Pandya
    • 1
  • William A. Dezarn
    • 2
  • Frank C. Marini
    • 1
  • Dawen Zhao
    • 3
  • William H. Gmeiner
    • 1
  • Pierre L. Triozzi
    • 4
  • Thaddeus J. Wadas
    • 1
    Email author
  1. 1.Department of Cancer BiologyWake Forest University Health SciencesWinston-SalemUSA
  2. 2.Department of Radiation OncologyWake Forest University Health SciencesWinston-SalemUSA
  3. 3.Department of Biomedical EngineeringWake Forest University Health SciencesWinston-SalemUSA
  4. 4.Department of Hematology and OncologyWake Forest University Health SciencesWinston-SalemUSA

Personalised recommendations