Advertisement

Positron Emission Tomography Imaging of Tumor Apoptosis with a Caspase-Sensitive Nano-Aggregation Tracer [18F]C-SNAT

  • Zixin Chen
  • Jianghong RaoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)

Abstract

Cellular apoptosis is an important criterion for evaluating the efficacy of cancer therapies. We have developed a new small molecule probe ([18F]C-SNAT) for positron emission tomography (PET) imaging of apoptosis. [18F]C-SNAT, when activated by caspase-3 and glutathione reduction, undergoes intramolecular cyclization followed by self-assembly to form nano-aggregates in apoptotic cells. This unique mechanism creates preferential retention of gamma radiation signals in targeted cells and thus enables the detection of apoptosis using PET, a sensitive and clinically practical technique. This protocol describes the chemical synthesis, radiolabeling and PET imaging of apoptosis using this probe.

Key words

Positron emission tomography (PET) Imaging Apoptosis Caspase-3 Nano-aggregation Radiolabeling “Click” reaction 

References

  1. 1.
    Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S.  https://doi.org/10.2967/jnumed.108.057307CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4(8):592–603.  https://doi.org/10.1038/nrc1412CrossRefPubMedGoogle Scholar
  3. 3.
    Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107.  https://doi.org/10.1038/nrc2289CrossRefPubMedGoogle Scholar
  4. 4.
    De Saint-Hubert M, Prinsen K, Mortelmans L et al (2009) Molecular imaging of cell death. Methods 48(2):178–187.  https://doi.org/10.1016/j.ymeth.2009.03.022CrossRefPubMedGoogle Scholar
  5. 5.
    Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95S.  https://doi.org/10.2967/jnumed.107.045898CrossRefPubMedGoogle Scholar
  6. 6.
    Zeng W, Wang X, Xu P et al (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5(6):559–582.  https://doi.org/10.7150/thno.11548CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Belhocine T, Steinmetz N, Hustinx R et al (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8(9):2766–2774PubMedGoogle Scholar
  8. 8.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350(14):1472–1473.  https://doi.org/10.1056/NEJM200404013501425CrossRefPubMedGoogle Scholar
  9. 9.
    Reshef A, Shirvan A, Akselrod-Ballin A et al (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51(6):837–840.  https://doi.org/10.2967/jnumed.109.063917CrossRefPubMedGoogle Scholar
  10. 10.
    Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22(10):388–393CrossRefPubMedGoogle Scholar
  11. 11.
    Nguyen QD, Smith G, Glaser M et al (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci USA 106(38):16375–16380.  https://doi.org/10.1073/pnas.0901310106CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhou D, Chu W, Rothfuss J et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16(19):5041–5046.  https://doi.org/10.1016/j.bmcl.2006.07.045CrossRefPubMedGoogle Scholar
  13. 13.
    Methot N, Vaillancourt JP, Huang J et al (2004) A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation. J Biol Chem 279(27):27905–27914.  https://doi.org/10.1074/jbc.M400247200CrossRefPubMedGoogle Scholar
  14. 14.
    Bedner E, Smolewski P, Amstad P et al (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 259(1):308–313.  https://doi.org/10.1006/excr.2000.4955CrossRefPubMedGoogle Scholar
  15. 15.
    Edgington LE, Berger AB, Blum G et al (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15(8):967–973.  https://doi.org/10.1038/nm.1938CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Laxman B, Hall DE, Bhojani MS et al (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99(26):16551–16555.  https://doi.org/10.1073/pnas.252644499CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bullok K, Piwnica-Worms D (2005) Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J Med Chem 48(17):5404–5407.  https://doi.org/10.1021/jm050008pCrossRefPubMedGoogle Scholar
  18. 18.
    Ai HW, Hazelwood KL, Davidson MW et al (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5(5):401–403.  https://doi.org/10.1038/nmeth.1207CrossRefPubMedGoogle Scholar
  19. 19.
    Bardet PL, Kolahgar G, Mynett A et al (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA 105(37):13901–13905.  https://doi.org/10.1073/pnas.0806983105CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Johnson JR, Kocher B, Barnett EM et al (2012) Caspase-activated cell-penetrating peptides reveal temporal coupling between endosomal release and apoptosis in an RGC-5 cell model. Bioconjug Chem 23(9):1783–1793.  https://doi.org/10.1021/bc300036zCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bauer C, Bauder-Wuest U, Mier W et al (2005) 131I-labeled peptides as caspase substrates for apoptosis imaging. J Nucl Med 46(6):1066–1074PubMedGoogle Scholar
  22. 22.
    Ye DJ, Shuhendler AJ, Cui LN et al (2014) Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem 6(6):519–526.  https://doi.org/10.1038/Nchem.1920CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shen B, Jeon J, Palner M et al (2013) Positron emission tomography imaging of drug-induced tumor apoptosis with a Caspase-triggered Nanoaggregation probe. Angew Chem Int Ed 52(40):10511–10514.  https://doi.org/10.1002/Anie.201303422CrossRefGoogle Scholar
  24. 24.
    Ye D, Shuhendler AJ, Pandit P et al (2014) Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem Sci 4(10):3845–3852.  https://doi.org/10.1039/C4SC01392ACrossRefPubMedGoogle Scholar
  25. 25.
    Palner M, Shen B, Jeon J et al (2015) Preclinical kinetic analysis of the Caspase-3/7 PET tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J Nucl Med 56(9):1415–1421.  https://doi.org/10.2967/jnumed.115.155259CrossRefPubMedGoogle Scholar
  26. 26.
    Witney TH, Hoehne A, Reeves RE et al (2015) A systematic comparison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment. Clin Cancer Res 21(17):3896–3905.  https://doi.org/10.1158/1078-0432.CCR-14-3176CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Imaging Program at Stanford, Departments of Radiology and ChemistryStanford UniversityStanfordUSA

Personalised recommendations