Advertisement

Imaging T Cell Dynamics and Function Using PET and Human Nuclear Reporter Genes

  • Jason T. Lee
  • Maxim A. Moroz
  • Vladimir PonomarevEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)

Abstract

Adoptive cell transfer immunotherapy has demonstrated significant promise in the treatment of cancer, with long-term, durable responses. T cells expressing T cell receptors (TCRs) that recognize tumor antigens, or engineered with chimeric antigen receptors (CARs) can recognize and eliminate tumor cells even in advanced disease. Positron emission tomography (PET) imaging with nuclear reporter genes, a noninvasive method to track and monitor function of engineered cells in vivo, allows quantitative, longitudinal monitoring of these cells, including their expansion/contraction, migration, retention at target and off-target sites, and biological state. As an additional advantage, some reporter genes also exhibit “suicide potential” permitting the safe elimination of adoptively transferred T cells in instances of adverse reaction to therapy. Here, we describe the production of human nuclear reporter gene-expressing T cells and noninvasive PET imaging to monitor their cell fate in vivo.

Key words

T cell Immunotherapy PET Human nuclear reporter gene Reporter probe Chimeric antigen receptors Nucleoside kinases 

Notes

Acknowledgments

This work was supported by the NIH P50 CA86438, R01 CA163980, and R01 CA161138 grants, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center, NIH Small-Animal Imaging Research Program (SAIRP), NIH Shared Instrumentation Grant No. 1 S10 RR020892-01, NIH Shared Instrumentation Grant No. 1 S10 RR028889-01, and NIH Center Grant P30 CA08748.

References

  1. 1.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68CrossRefGoogle Scholar
  2. 2.
    Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433CrossRefPubMedGoogle Scholar
  3. 3.
    Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cartellieri M et al (2010) Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol 2010:956304CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sadelain M (2015) CAR therapy: the CD19 paradigm. J Clin Invest 125(9):3392–3400CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Morello A, Sadelain M, Adusumilli PS (2016) Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 6(2):133–146CrossRefGoogle Scholar
  8. 8.
    Restifo NP, Smyth MJ, Snyder A (2016) Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16(2):121–126CrossRefPubMedGoogle Scholar
  9. 9.
    Moynihan KD et al (2006) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22(12):1402–1410CrossRefGoogle Scholar
  10. 10.
    Lucignani G et al (2006) Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 24(9):410–418CrossRefPubMedGoogle Scholar
  11. 11.
    Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195SCrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yaghoubi SS et al (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2(4):374–391CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sadelain M (2009) T-cell engineering for cancer immunotherapy. Cancer J 15(6):451–455CrossRefPubMedGoogle Scholar
  14. 14.
    Wang X, Riviere I (2016) Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Likar Y et al (2010) A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med 51(9):1395–1403CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yaghoubi SS et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6(1):53–58CrossRefPubMedGoogle Scholar
  17. 17.
    Ponomarev V et al (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3(6):480–488CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Minn I et al (2014) Molecular-genetic imaging of cancer. Adv Cancer Res 124:131–169CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shu CJ et al (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21(2):155–165CrossRefPubMedGoogle Scholar
  20. 20.
    McCracken MN et al (2015) Noninvasive detection of tumor-infiltrating T cells by PET reporter imaging. J Clin Invest 125(5):1815–1826CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dobrenkov K et al (2008) Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 49(7):1162–1170CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dubey P et al (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 100(3):1232–1237CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hoekstra ME et al (2015) Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol 36(7):392–400CrossRefPubMedGoogle Scholar
  24. 24.
    Moroz MA et al (2015) Comparative analysis of T cell imaging with human nuclear reporter genes. J Nucl Med 56(7):1055–1060CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sadelain M, Frassoni F, Riviere I (2000) Issues in the manufacture and transplantation of genetically modified hematopoietic stem cells. Curr Opin Hematol 7(6):364–377CrossRefPubMedGoogle Scholar
  26. 26.
    Zanzonico P et al (2006) [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging 33(9):988–997CrossRefPubMedGoogle Scholar
  27. 27.
    Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45(9):1431–1434PubMedGoogle Scholar
  28. 28.
    Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137CrossRefPubMedGoogle Scholar
  29. 29.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jason T. Lee
    • 1
  • Maxim A. Moroz
    • 1
  • Vladimir Ponomarev
    • 1
    Email author
  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations