Skip to main content

Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo

  • Protocol
  • First Online:
Reporter Gene Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1790))

Abstract

Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources 42:219–232

    Article  CAS  Google Scholar 

  3. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  4. Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8:677–688

    Article  PubMed  CAS  Google Scholar 

  5. Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48:104–111

    Article  PubMed  CAS  Google Scholar 

  6. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. The Quarterly Journal of Nuclear Medicine and Molecular Imaging: Official Publication of the Italian Association of Nuclear Medicine 49:349–360

    CAS  Google Scholar 

  7. Gelovani Tjuvajev J, Blasberg RG (2003) In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3:327–332

    Article  PubMed  Google Scholar 

  8. Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol 51:191–204

    Article  PubMed  Google Scholar 

  9. McCracken MN, Tavare R, Witte ON, Wu AM (2016) Advances in PET detection of the antitumor T cell response. Adv Immunol 131:187–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Saral R, Burns WH, Laskin OL, Santos GW, Lietman PS (1981) Acyclovir prophylaxis of herpes-simplex-virus infections. N Engl J Med 305:63–67

    Article  PubMed  CAS  Google Scholar 

  11. Tiberghien P, Reynolds CW, Keller J et al (1994) Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood 84:1333–1341

    PubMed  CAS  Google Scholar 

  12. Black ME, Newcomb TG, Wilson HM, Loeb LA (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 93:3525–3529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Blumenthal M, Skelton D, Pepper KA, Jahn T, Methangkool E, Kohn DB (2007) Effective suicide gene therapy for leukemia in a model of insertional oncogenesis in mice. Molecular therapy: The Journal of the American Society of Gene Therapy 15:183–192

    Article  CAS  Google Scholar 

  14. Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  15. Gambhir SS, Barrio JR, Wu L et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 39:2003–2011

    CAS  Google Scholar 

  16. Tjuvajev JG, Avril N, Oku T et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    CAS  PubMed  Google Scholar 

  17. Penuelas I, Boan JF, Marti-Climent JM et al (2002) A fully automated one pot synthesis of 9-(4-[18F]fluoro-3-hydroxymethylbutyl) guanine for gene therapy studies. Molecular imaging and biology: MIB: The Official Publication of the Academy of Molecular Imaging 4:415–424

    Article  Google Scholar 

  18. Yaghoubi S, Barrio JR, Dahlbom M et al (2001) Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 42:1225–1234

    CAS  Google Scholar 

  19. Le LQ, Kabarowski JH, Wong S, Nguyen K, Gambhir SS, Witte ON (2002) Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell 1:381–391

    Article  CAS  PubMed  Google Scholar 

  20. Hustinx R, Shiue CY, Alavi A et al (2001) Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and. Eur J Nucl Med 28:5–12

    Article  PubMed  CAS  Google Scholar 

  21. Su H, Forbes A, Gambhir SS, Braun J (2004) Quantitation of cell number by a positron emission tomography reporter gene strategy. Molecular imaging and biology: MIB: the Official Publication of the Academy of Molecular Imaging 6:139–148

    Article  Google Scholar 

  22. Johnson M, Karanikolas BD, Priceman SJ et al (2009) Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. Journal of nuclear medicine: Official Publication, Society of Nuclear Medicine 50:757–764

    Article  CAS  Google Scholar 

  23. Moolten FL, Wells JM, Heyman RA, Evans RM (1990) Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum Gene Ther 1:125–134

    Article  PubMed  CAS  Google Scholar 

  24. Gambhir SS, Bauer E, Black ME et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97:2785–2790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Davis HE, Morgan JR, Yarmush ML (2002) Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97:159–172

    Article  PubMed  CAS  Google Scholar 

  26. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  27. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245

    Article  PubMed  CAS  Google Scholar 

  28. Ponde DE, Dence CS, Schuster DP, Welch MJ (2004) Rapid and reproducible radiosynthesis of [18F] FHBG. Nucl Med Biol 31:133–138

    Article  PubMed  CAS  Google Scholar 

  29. Alauddin MM, Conti PS (1998) Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25:175–180

    Article  PubMed  CAS  Google Scholar 

  30. Shiue GG, Shiue CY, Lee RL et al (2001) A simplified one-pot synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine([18F]FHPG) and 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) for gene therapy. Nucl Med Biol 28:875–883

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

M.N.M. is supported by the Stanford Dean’s Fellowship and the A.P. Giannini Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McCracken, M.N. (2018). Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo. In: Dubey, P. (eds) Reporter Gene Imaging. Methods in Molecular Biology, vol 1790. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7860-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7860-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7858-8

  • Online ISBN: 978-1-4939-7860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics