Advertisement

Dual Modality Imaging of Promoter Activity as a Surrogate for Gene Expression and Function

  • Ajit Dhadve
  • Bhushan Thakur
  • Pritha RayEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1790)

Abstract

Molecular functional imaging with optical reporter genes (both bioluminescence and fluorescence) is a rapidly evolving method that allows noninvasive, sensitive, real-time monitoring of many cellular events in live cells and whole organisms. These reporter genes with optical signatures when expressed from gene-specific promoters or Cis/Trans elements mimic the endogenous expression pattern without perturbing cellular physiology. With advanced recombinant molecular biology techniques, several strategies for optimal expression from constitutive or inducible, tissue-specific and weak promoters have been developed and used for dynamic and functional imaging. In this chapter, we provide an overview of the applications of this powerful technology for imaging gene expression in living cells and rodent models.

Key words

Noninvasive imaging Dual modality Luciferase Fluorescence Gene expression 

References

  1. 1.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580CrossRefPubMedGoogle Scholar
  2. 2.
    Thakur B et al (2015) Molecular imaging of therapeutic potential of reporter probes. Curr Drug Targets 16(6):645–657CrossRefPubMedGoogle Scholar
  3. 3.
    Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17(6):646–657CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shimomura O (1985) Bioluminescence in the sea: photoprotein systems. Symp Soc Exp Biol 39:351–372PubMedGoogle Scholar
  5. 5.
    Tannous BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4(4):582–591CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Inouye S et al (2000) Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase(1). FEBS Lett 481(1):19–25CrossRefPubMedGoogle Scholar
  7. 7.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239CrossRefPubMedGoogle Scholar
  8. 8.
    Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613CrossRefPubMedGoogle Scholar
  9. 9.
    Sato S et al (2016) Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny. Sci Rep 6:23328CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carlson AL et al (2013) Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8(8):e69257CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choy G et al (2003) Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques 35(5):1022–1030PubMedGoogle Scholar
  12. 12.
    Swenson ES et al (2007) Limitations of green fluorescent protein as a cell lineage marker. Stem Cells 25(10):2593–2600CrossRefPubMedGoogle Scholar
  13. 13.
    Brogan J et al (2012) Imaging molecular pathways: reporter genes. Radiat Res 177(4):508–513CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schonig K et al (2012) Conditional gene expression systems in the transgenic rat brain. BMC Biol 10:77CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang H et al (2009) Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27(7):1548–1558CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Qin JY et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang G et al (2015) Development of endothelial-specific single inducible lentiviral vectors for genetic engineering of endothelial progenitor cells. Sci Rep 5:17166CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huang BL, Brugger SM, Lyons KM (2010) Stage-specific control of connective tissue growth factor (CTGF/CCN2) expression in chondrocytes by Sox9 and beta-catenin. J Biol Chem 285(36):27702–27712CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dussmann P et al (2011) Live in vivo imaging of Egr-1 promoter activity during neonatal development, liver regeneration and wound healing. BMC Dev Biol 11:28CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iyer M et al (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 98(25):14595–14600CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5(9):1513–1523CrossRefPubMedGoogle Scholar
  22. 22.
    Bonnerot C, Nicolas JF (1993) Application of LacZ gene fusions to postimplantation development. Methods Enzymol 225:451–469CrossRefPubMedGoogle Scholar
  23. 23.
    Maretto S et al (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100(6):3299–3304CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Watson CM et al (2008) Application of lacZ transgenic mice to cell lineage studies. Methods Mol Biol 461:149–164CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bengtsson NE et al (2010) lacZ as a genetic reporter for real-time MRI. Magn Reson Med 63(3):745–753CrossRefPubMedGoogle Scholar
  26. 26.
    Akin O et al (2012) Advances in oncologic imaging: update on 5 common cancers. CA Cancer J Clin 62(6):364–393CrossRefPubMedGoogle Scholar
  27. 27.
    Barsanti C, Lenzarini F, Kusmic C (2015) Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes 6(6):792–806CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dweck MR et al (2016) Imaging of coronary atherosclerosis – evolution towards new treatment strategies. Nat Rev Cardiol 13(9):533–548CrossRefPubMedGoogle Scholar
  29. 29.
    Garland M, Yim JJ, Bogyo M (2016) A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chemical Biology 23(1):122–136CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63(6):1160–1165PubMedGoogle Scholar
  31. 31.
    Lehmann S et al (2009) Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc Natl Acad Sci U S A 106(33):14004–14009CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim JB et al (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One 5(2):e9364CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu H et al (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 107(42):18115–18120CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Puaux AL et al (2011) A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. Int J Mol Imaging 2011:321538CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang Y et al (2002) Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol Gen Genomics 268(2):160–168CrossRefGoogle Scholar
  36. 36.
    Klerk CP et al (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(1 Suppl):7–13, 30CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stabenow D et al (2010) Bioluminescence imaging allows measuring CD8 T cell function in the liver. Hepatology 51(4):1430–1437CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feng M et al (2011) In vivo imaging of human malignant mesothelioma grown orthotopically in the peritoneal cavity of nude mice. J Cancer 2:123–131CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ji X et al (2009) Noninvasive visualization of retinoblastoma growth and metastasis via bioluminescence imaging. Invest Ophthalmol Vis Sci 50(12):5544–5551CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim Y et al (2011) Sensitive optical detection of an early metastatic tumor using a new cell line with enhanced luminescent and fluorescent signals. J Anal Sci Technol 2(2):83–90CrossRefGoogle Scholar
  41. 41.
    Peiris PM et al (2014) Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. J Control Release 173:51–58CrossRefPubMedGoogle Scholar
  42. 42.
    Martinez-Corral I et al (2012) In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci U S A 109(16):6223–6228CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gaikwad SM et al (2013) Non-invasive imaging of phosphoinositide-3-kinase-catalytic-subunit-alpha (PIK3CA) promoter modulation in small animal models. PLoS One 8(2):e55971CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cibulskis RE et al (2016) Malaria: global progress 2000-2015 and future challenges. Infect Dis Poverty 5(1):61CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ploemen IH et al (2009) Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS One 4(11):e7881CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kim KH et al (2012) Expression and significance of the TLR4/MyD88 signaling pathway in ovarian epithelial cancers. World J Surg Oncol 10:193CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gaikwad SM et al (2015) Differential activation of NF-kappaB signaling is associated with platinum and taxane resistance in MyD88 deficient epithelial ovarian cancer cells. Int J Biochem Cell Biol 61:90–102CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Buckley SM et al (2015) In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 5:11842CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gossen M et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755CrossRefPubMedGoogle Scholar
  52. 52.
    Sasportas LS et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Alieva M et al (2012) Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PLoS One 7(4):e35148CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ju HL et al (2015) Transgenic mouse model expressing P53(R172H), luciferase, EGFP, and KRAS(G12D) in a single open reading frame for live imaging of tumor. Sci Rep 5:8053CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gravel M, Weng YC, Kriz J (2011) Model system for live imaging of neuronal responses to injury and repair. Mol Imaging 10(6):434–445CrossRefPubMedGoogle Scholar
  56. 56.
    Del Vecchio I et al (2009) Functional mapping of the promoter region of the GNB2L1 human gene coding for RACK1 scaffold protein. Gene 430(1-2):17–29CrossRefPubMedGoogle Scholar
  57. 57.
    Zou MX et al (2004) Characterization of functional elements in the neurofibromatosis (NF1) proximal promoter region. Oncogene 23(2):330–339CrossRefPubMedGoogle Scholar
  58. 58.
    Wu C et al (2009) In vivo far-red luminescence imaging of a biomarker based on BRET from Cypridina bioluminescence to an organic dye. Proc Natl Acad Sci U S A 106(37):15599–15603CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Levin RA et al (2014) An optimized triple modality reporter for quantitative in vivo tumor imaging and therapy evaluation. PLoS One 9(5):e97415CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jathoul AP et al (2014) A dual-color far-red to near-infrared firefly luciferin analogue designed for multiparametric bioluminescence imaging. Angew Chem Int Ed Engl 53(48):13059–13063CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ray P et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Navi MumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations