Skip to main content

Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay

  • Protocol
  • First Online:
Book cover Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

  • 1052 Accesses

Abstract

The bimolecular fluorescent complementation (BiFC) is a fluorescent complementation method largely used to investigate protein–protein interaction in living cells. This method is based on the ability of two nonfluorescent fragments to assemble forming a native fluorescent reporter with the same spectral properties of the native reporter. Such fragments are fused to putative protein partners that in case of interaction will bring the two halves in close proximity, allowing for the reconstitution of an active fluorescent reporter. The BiFC has been used to investigate protein–protein interaction in a number of different organisms, including plants. In plant cells, many essential pathways of protein trafficking and subcellular localization necessitate the intervention of several protein units organized in multisubunit complexes. It is well known that vacuolar sorting of many secretory soluble proteins require the intervention of specific transmembrane cargo receptors able to interact forming dimers. In this chapter we describe a BiFC method for the efficient visualization of RMR (Receptor Membrane RING-H2) type 2 dimerization in agro-infiltrated Nicotiana benthamiana leaves. Furthermore, this relatively simple method represents an optimal strategy to test protein–protein interaction using any other putative protein partners of interest in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Braun P, Gingras AC (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12(10):1478–1498. https://doi.org/10.1002/pmic.201100563

    Article  PubMed  CAS  Google Scholar 

  3. Xiang L, Etxeberria E, Van den Ende W (2013) Vacuolar protein sorting mechanisms in plants. FEBS J 280(4):979–993. https://doi.org/10.1111/febs.12092

    Article  PubMed  CAS  Google Scholar 

  4. Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 91(8):3403–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao X, Rogers SW, Butler J, Beevers L, Rogers JC (2000) Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12(4):493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim H, Kang H, Jang M, Chang JH, Miao Y, Jiang L, Hwang I (2010) Homomeric interaction of AtVSR1 is essential for its function as a vacuolar sorting receptor. Plant Physiol 154(1):134–148. https://doi.org/10.1104/pp.110.159814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Occhialini A, Gouzerh G, Di Sansebastiano GP, Neuhaus JM (2016) Dimerization of the vacuolar receptors AtRMR1 and −2 from Arabidopsis thaliana contributes to their localization in the trans-Golgi network. Int J Mol Sci 17(10):1661. https://doi.org/10.3390/ijms17101661

    Article  PubMed Central  CAS  Google Scholar 

  9. Kerppola TK (2008) Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol 85:431–470. https://doi.org/10.1016/s0091-679x(08)85019-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Miller KE, Kim Y, Huh WK, Park HO (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427(11):2039–2055. https://doi.org/10.1016/j.jmb.2015.03.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7(6):449–456. https://doi.org/10.1038/nrm1929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9(4):789–798

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh I, Hamilton AD, Regan L (2000) Antiparallel Leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122(23):5658–5659. https://doi.org/10.1021/ja994421w

    Article  CAS  Google Scholar 

  14. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17(9):818–823. https://doi.org/10.1016/j.cub.2007.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by agrobacterium. Nature 431(7004):87–92. https://doi.org/10.1038/nature02857

    Article  PubMed  CAS  Google Scholar 

  16. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96(5):2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21(5):539–545. https://doi.org/10.1038/nbt816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jach G, Pesch M, Richter K, Frings S, Uhrig JF (2006) An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat Methods 3(8):597–600. https://doi.org/10.1038/nmeth901

    Article  PubMed  CAS  Google Scholar 

  19. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  PubMed  CAS  Google Scholar 

  20. Chu J, Zhang Z, Zheng Y, Yang J, Qin L, Lu J, Huang ZL, Zeng S, Luo Q (2009) A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens Bioelectron 25(1):234–239. https://doi.org/10.1016/j.bios.2009.06.008

    Article  PubMed  CAS  Google Scholar 

  21. Han Y, Wang S, Zhang Z, Ma X, Li W, Zhang X, Deng J, Wei H, Li Z, Zhang XE, Cui Z (2014) In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res 42(13):e103. https://doi.org/10.1093/nar/gku408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40(1):61–66

    Article  CAS  PubMed  Google Scholar 

  23. Ohad N, Shichrur K, Yalovsky S (2007) The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol 145(4):1090–1099. https://doi.org/10.1104/pp.107.107284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Grinberg AV, Hu CD, Kerppola TK (2004) Visualization of Myc/max/mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 24(10):4294–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832

    Article  CAS  PubMed  Google Scholar 

  26. Neuhaus JM, Ahl-Goy P, Hinz U, Flores S, Meins F Jr (1991) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16(1):141–151

    Article  CAS  PubMed  Google Scholar 

  27. Peremyslov VV, Pan YW, Dolja VV (2004) Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol 78(7):3704–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MA, Hanson MR (2014) Beta-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79(1):1–12. https://doi.org/10.1111/tpj.12536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38(10):2887–2921. https://doi.org/10.1039/b901966a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dixit R, Cyr R, Gilroy S (2006) Using intrinsically fluorescent proteins for plant cell imaging. Plant J 45(4):599–615. https://doi.org/10.1111/j.1365-313X.2006.02658.x

    Article  PubMed  CAS  Google Scholar 

  31. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the agrobacterium tumefaciens Ti-plasmid. Nature 303(5913):179–180

    Article  CAS  Google Scholar 

  32. de Framond AJ, Barton KA, Chilton M-D (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Nat Biotech 1(3):262–269

    Article  Google Scholar 

  33. Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146(2):325–332. https://doi.org/10.1104/pp.107.113001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hellens R, Mullineaux P, Klee H (2000) Technical focus:a guide to agrobacterium binary Ti vectors. Trends Plant Sci 5(10):446–451

    Article  CAS  PubMed  Google Scholar 

  35. Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. In: Wang K (ed) Agrobacterium Protocols. Humana Press, Totowa, NJ, pp 15–42. https://doi.org/10.1385/1-59745-130-4:15

    Chapter  Google Scholar 

Download references

Acknowledgments

Alessandro Occhialini thanks prof. Jean-Marc Neuhaus (University of Neuchâtel, Switzerland) for helpful discussion and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Occhialini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Occhialini, A. (2018). Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay. In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics