Skip to main content

Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking. Identifying the organelle localization of a protein of interest is essential for determining the proteins physiological functions. Here, we describe methods for determining protein subcellular localization using the inhibitors brefeldin A and wortmannin in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffing LR, Lin C, Perico C, White RR, Sparkes I (2017) Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. Protoplasma 254(1):43–56. https://doi.org/10.1007/s00709-016-0945-3

    Article  PubMed  Google Scholar 

  2. Fuji K, Shirakawa M, Shimono Y, Kunieda T, Fukao Y, Koumoto Y, Takahashi H, Hara-Nishimura I, Shimada T (2016) The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol 170(1):211–219. https://doi.org/10.1104/pp.15.00869

    Article  PubMed  CAS  Google Scholar 

  3. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730. https://doi.org/10.1105/tpc.105.037978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14(6):666–673. https://doi.org/10.1016/j.pbi.2011.07.009

    Article  PubMed  CAS  Google Scholar 

  5. Anders N, Jurgens G (2008) Large ARF guanine nucleotide exchange factors in membrane trafficking. Cellular and molecular life sciences: CMLS 65(21):3433–3445. https://doi.org/10.1007/s00018-008-8227-7

    Article  PubMed  CAS  Google Scholar 

  6. Jurgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3(9):605–613

    Article  CAS  PubMed  Google Scholar 

  7. Robinson DG, Langhans M, Saint-Jore-Dupas C, Hawes C (2008) BFA effects are tissue and not just plant specific. Trends Plant Sci 13(8):405–408. https://doi.org/10.1016/j.tplants.2008.05.010

    Article  PubMed  CAS  Google Scholar 

  8. Du W, Tamura K, Stefano G, Brandizzi F (2013) The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1. Mol Plant 6(3):905–915. https://doi.org/10.1093/mp/sss124

    Article  PubMed  CAS  Google Scholar 

  9. Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A (2012) Cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin a treatment in tobacco BY-2 cells. Mol Biol Cell 23(16):3203–3214. https://doi.org/10.1091/mbc.E12-01-0034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tse YC, Lo SW, Hillmer S, Dupree P, Jiang L (2006) Dynamic response of prevacuolar compartments to brefeldin a in plant cells. Plant Physiol 142(4):1442–1459. https://doi.org/10.1104/pp.106.090423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ito Y, Toyooka K, Fujimoto M, Ueda T, Uemura T, Nakano A (2017) The trans-Golgi network and the Golgi stacks behave independently during regeneration after brefeldin a treatment in tobacco BY-2 cells. Plant Cell Physiol 58(4):811–821. https://doi.org/10.1093/pcp/pcx028

    Article  PubMed  CAS  Google Scholar 

  12. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112(2):219–230. doi:S0092867403000035 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59(1):169–178. https://doi.org/10.1111/j.1365-313X.2009.03851.x. TPJ3851 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Teh OK, Moore I (2007) An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448(7152):493–496. https://doi.org/10.1038/nature06023

    Article  PubMed  CAS  Google Scholar 

  15. Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497. https://doi.org/10.1016/j.pbi.2011.06.007

    Article  PubMed  CAS  Google Scholar 

  16. Heilmann I (2016) Phosphoinositide signaling in plant development. Development 143(12):2044–2055. https://doi.org/10.1242/dev.136432

    Article  PubMed  CAS  Google Scholar 

  17. Simon ML, Platre MP, Assil S, van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77(2):322–337. https://doi.org/10.1111/tpj.12358

    Article  PubMed  CAS  Google Scholar 

  18. Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11(6):620–631. https://doi.org/10.1016/j.pbi.2008.10.010

    Article  PubMed  CAS  Google Scholar 

  19. Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20(12):3312–3330. https://doi.org/10.1105/tpc.108.059568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20(2):367–380. https://doi.org/10.1105/tpc.107.056119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M, Stenzel I, Lofke C, Wiessner T, Im YJ, Perera IY, Iven T, Feussner I, Busch W, Boss WF, Teichmann T, Hause B, Persson S, Heilmann I (2013) Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25(12):4894–4911. https://doi.org/10.1105/tpc.113.116582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172(7):991–998. https://doi.org/10.1083/jcb.200508116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12(3):313–329. https://doi.org/10.1111/j.1600-0854.2010.01146.x

    Article  PubMed  CAS  Google Scholar 

  24. Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13(2):287–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phan NQ, Kim SJ, Bassham DC (2008) Overexpression of Arabidopsis sorting nexin AtSNX2b inhibits endocytic trafficking to the vacuole. Mol Plant 1(6):961–976. https://doi.org/10.1093/mp/ssn057

    Article  PubMed  CAS  Google Scholar 

  26. Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14(10):2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y (2008) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147(2):624–635. https://doi.org/10.1104/pp.108.117341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Aggarwal C, Labuz J, Gabrys H (2013) Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 8(2):e55393. https://doi.org/10.1371/journal.pone.0055393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T (2015) Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. Plant Cell Physiol 56(2):287–298. https://doi.org/10.1093/pcp/pcu195

    Article  PubMed  CAS  Google Scholar 

  30. Vermeer JE, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TW Jr (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57(2):356–372. https://doi.org/10.1111/j.1365-313X.2008.03679.x

    Article  PubMed  CAS  Google Scholar 

  31. Krinke O, Ruelland E, Valentova O, Vergnolle C, Renou JP, Taconnat L, Flemr M, Burketova L, Zachowski A (2007) Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol 144(3):1347–1359. https://doi.org/10.1104/pp.107.100842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Takac T, Pechan T, Samajova O, Samaj J (2013) Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J Proteome Res 12(10):4435–4448. https://doi.org/10.1021/pr400466x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jaillais Y, Fobis-Loisy I, Miege C, Gaude T (2008) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53(2):237–247. https://doi.org/10.1111/j.1365-313X.2007.03338.x

    Article  PubMed  CAS  Google Scholar 

  34. Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26(7):3062–3076. https://doi.org/10.1105/tpc.114.125880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fujiwara M, Uemura T, Ebine K, Nishimori Y, Ueda T, Nakano A, Sato MH, Fukao Y (2014) Interactomics of Qa-SNARE in Arabidopsis thaliana. Plant Cell Physiol 55(4):781–789. https://doi.org/10.1093/pcp/pcu038

    Article  PubMed  CAS  Google Scholar 

  36. Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci U S A 109(5):1784–1789. https://doi.org/10.1073/pnas.1115146109

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29(2):49–65. doi:JST.JSTAGE/csf/29.49 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20(11):3006–3021. https://doi.org/10.1105/tpc.107.057711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51(6):1126–1136. doi:TPJ3212 [pii]10.1111/j.1365-313X.2007.03212.x

    Article  CAS  PubMed  Google Scholar 

  40. Zheng H, Kunst L, Hawes C, Moore I (2004) A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J 37(3):398–414

    Article  CAS  PubMed  Google Scholar 

  41. von der Fecht-Bartenbach J, Bogner M, Krebs M, Stierhof YD, Schumacher K, Ludewig U (2007) Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J 50(3):466–474. https://doi.org/10.1111/j.1365-313X.2007.03061.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shirakawa M, Ueda H, Koumoto Y, Fuji K, Nishiyama C, Kohchi T, Hara-Nishimura I, Shimada T (2014) CONTINUOUS VASCULAR RING (COV1) is a trans-Golgi network-localized membrane protein required for Golgi morphology and vacuolar protein sorting. Plant Cell Physiol 55(4):764–772. https://doi.org/10.1093/pcp/pct195

    Article  PubMed  CAS  Google Scholar 

  43. Gendre D, Oh J, Boutte Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A, Bennett MJ, Grebe M, Bhalerao RP (2011) Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A 108(19):8048–8053. https://doi.org/10.1073/pnas.1018371108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Inada N, Betsuyaku S, Shimada TL, Ebine K, Ito E, Kutsuna N, Hasezawa S, Takano Y, Fukuda H, Nakano A, Ueda T (2016) Modulation of plant RAB GTPase-mediated membrane trafficking pathway at the Interface between plants and obligate Biotrophic pathogens. Plant Cell Physiol 57(9):1854–1864. https://doi.org/10.1093/pcp/pcw107

    Article  PubMed  CAS  Google Scholar 

  45. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443(7107):106–109. https://doi.org/10.1038/nature05046

    Article  PubMed  CAS  Google Scholar 

  46. Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH (2009) Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol 50(2):280–289. https://doi.org/10.1093/pcp/pcn197

    Article  PubMed  CAS  Google Scholar 

  47. Brux A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20(4):1088–1100. https://doi.org/10.1105/tpc.108.058362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97(7):3718–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reichardt I, Stierhof YD, Mayer U, Richter S, Schwarz H, Schumacher K, Jurgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17(23):2047–2053. doi:S0960-9822(07)02137-9 [pii]10.1016/j.cub.2007.10.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for JSPS Research Fellow to J.T. (15J07657) and Grants-in-Aid for Scientific Research to T.U. (No. 15H04627) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Uemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takagi, J., Uemura, T. (2018). Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana . In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics