Skip to main content

The Use of Drugs in the Study of Vacuole Morphology and Trafficking to the Vacuole in Arabidopsis thaliana

  • Protocol
  • First Online:
Book cover Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

Chemical compounds are useful to perturb biological functions in the same way as classical genetic approaches take advantage of mutations at the DNA level to perturb gene function. The use of bioactive chemicals currently called chemical genetic is especially valuable for cell biology. Chemical genetic approaches allow perturbations of cellular processes post-germination in a given time window controlling the severity of the effect by modifying or modulating the dose and/or the period of the treatment. Additionally, compounds can be applied directly to different mutants and translational fluorescent reporters/marker lines, expanding the repertoire of experimental setups addressing cell biology research. In this chapter, we describe standard protocols to visualize vacuole morphology and trafficking to the vacuole and the use of bioactive compounds as a proxy to study these biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frigerio L, Hinz G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9:1564–1570. https://doi.org/10.1111/j.1600-0854.2008.00776.x

    Article  PubMed  CAS  Google Scholar 

  2. Pedrazzini E, Komarova NY, Rentsch D, Vitale A (2013) Traffic routes and signals for the Tonoplast. Traffic 14:622–628. https://doi.org/10.1111/tra.12051

    Article  CAS  PubMed  Google Scholar 

  3. Xiang L, Etxeberria E, Van Den Ende W (2013) Vacuolar protein sorting mechanisms in plants. FEBS J 280:979–993. https://doi.org/10.1111/febs.12092

    Article  CAS  PubMed  Google Scholar 

  4. Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318. https://doi.org/10.1083/jcb.130.6.1307

    Article  PubMed  CAS  Google Scholar 

  5. Norambuena L, Tejos R (2017) Chemical genetic dissection of membrane trafficking. Annu Rev Plant Biol 68:197–224

    Article  CAS  PubMed  Google Scholar 

  6. Kleine-Vehn J, Leitner J, Zwiewka M et al (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105:17812–17817. https://doi.org/10.1073/pnas.0808073105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alvarez AA, Han SW, Toyota M et al (2016) Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls. J Exp Bot 67:6459–6472. https://doi.org/10.1093/jxb/erw418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zouhar J, Hicks GR, Raikhel NV (2004) Sorting inhibitors (Sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci U S A 101:9497–9501. https://doi.org/10.1073/pnas.0402121101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rosado A, Hicks GR, Norambuena L et al (2011) Sortin1-hypersensitive mutants link vacuolar-trafficking defects and flavonoid metabolism in Arabidopsis vegetative tissues. Chem Biol 18:187–197. https://doi.org/10.1016/j.chembiol.2010.11.015

    Article  PubMed  CAS  Google Scholar 

  10. Pérez-Henríquez P, Raikhel NV, Norambuena L (2012) Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCFTIR-independent mechanism of lateral root formation in A. thaliana. Mol Plant 5:1195–1209. https://doi.org/10.1093/mp/sss066

    Article  PubMed  CAS  Google Scholar 

  11. Dejonghe W, Kuenen S, Mylle E et al (2016) Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat Commun 7:11710. https://doi.org/10.1038/ncomms11710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ et al (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin a. Plant J 48:757–770. https://doi.org/10.1111/j.1365-313X.2006.02909.x

    Article  PubMed  CAS  Google Scholar 

  13. Zhang C, Brown MQ, van de Ven W et al (2015) Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci U S A:E41–E50. https://doi.org/10.1073/pnas.1521248112

    Article  CAS  Google Scholar 

  14. Rojas-Pierce M, Titapiwatanakun B, Sohn EJ et al (2007) Arabidopsis P-Glycoprotein19 participates in the inhibition of Gravitropism by Gravacin. Chem Biol 14:1366–1376. https://doi.org/10.1016/j.chembiol.2007.10.014

    Article  PubMed  CAS  Google Scholar 

  15. Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of Tonoplast intrinsic proteins in Arabidopsis. PLoS One 7:1–11. https://doi.org/10.1371/journal.pone.0044735

    Article  CAS  Google Scholar 

  16. Scheuring D, Schöller M, Kleine-Vehn J, Löfke C (2015) Vacuolar staining methods in plant cells. Methods Mol Biol 1242:83–92. https://doi.org/10.1007/978-1-4939-1902-4_8

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez-Furlán C, Hicks GR, Norambuena L (2014) Chemical genomics: characterizing target pathways for bioactive compounds using the endomembrane trafficking network. Methods Mol Biol 1174:317–328. https://doi.org/10.1007/978-1-4939-0944-5_22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants numbers 1170950 to LN and 1171442 to RT from the Fondo Nacional de Investigación Científica y Tecnológica (Fondecyt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Norambuena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tejos, R., Osorio-Navarro, C., Norambuena, L. (2018). The Use of Drugs in the Study of Vacuole Morphology and Trafficking to the Vacuole in Arabidopsis thaliana . In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics