Skip to main content

Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM)

  • Protocol
  • First Online:
Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

Anthocyanins are intrinsically fluorescent pigments that accumulate in plant vacuoles. We have developed a platform to analyze the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), under in vitro and in vivo conditions. Fluorescence lifetime of a fluorophore can be influenced by temperature, pH, oxygen concentration, and other environmental conditions. Within plant cells, the anthocyanin fluorescence lifetime correlates with distinct subcellular compartments. Vacuolar anthocyanins exhibit shorter fluorescence lifetime than the cytoplasmic pool. Consistent with these observations, lower pH of anthocyanins solutions correlated with shorter fluorescence lifetimes. We discuss here the use of FLIM as a tool for analyzing the subcellular distribution of anthocyanins and estimating variation in vacuolar pH in intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts JKM, Ray PM, Wade-Jardetzky N, Jardetzky O (1980) Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature 283:870–872

    Article  CAS  Google Scholar 

  3. Krebs M, Beyhl D, Gorlich E, Al-Rasheid KAS, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci U S A 107:3251–3256

    Article  PubMed  PubMed Central  Google Scholar 

  4. Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18:2567–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martiniere A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N (2013) In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25:4028–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang R-J, Liu H, Yang Y, Yang L, Gao X-S, Garcia VJ, Luan S, Zhang H-X (2012) Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res 22:1650–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  8. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  9. Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27:2545–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145

    Google Scholar 

  11. Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E (2010) The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant 3:78–90

    Article  CAS  PubMed  Google Scholar 

  12. Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM (2014) Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6:32–43

    Article  CAS  PubMed  Google Scholar 

  13. Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E (2015) pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell 27:1200–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang CW, Sud D, Mycek MA (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495–524

    Article  CAS  PubMed  Google Scholar 

  15. Chanoca A, Burkel B, Kovinich N, Grotewold E, Eliceiri KW, Otegui MS (2016) Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. Plant J 88:895–903

    Article  CAS  PubMed  Google Scholar 

  16. So PTC, Dong CY (2001) Fluorescence spectrophotometry. In eLSJohn Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer

    Google Scholar 

  18. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  21. Saslowsky DE, Dana CD, Winkel-Shirley B (2000) An allelic series for the chalcone synthase locus in Arabidopsis. Gene 255:127–138

    Article  CAS  PubMed  Google Scholar 

  22. Lange H, Shropshire W, Mohr H (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol 47:649–655

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mancinelli AL, Yang C-PH, Lindquist P, Anderson OR, Rabino I (1975) Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol 55:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindoo SJ, Caldwell MM (1978) Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production: lack of involvement of the low irradiance Phytochrome system. Plant Physiol 61:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant MCB-1048847 to EG and MSO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa S. Otegui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chanoca, A., Burkel, B., Grotewold, E., Eliceiri, K.W., Otegui, M.S. (2018). Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM). In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics