Advertisement

Cell-Based Methods to Identify Inducers of Human Pancreatic Beta-Cell Proliferation

  • Courtney A. Ackeifi
  • Ethan A. Swartz
  • Peng Wang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1787)

Abstract

Diabetes is the result of the insufficiency or dysfunction of pancreatic beta cells alone or in combination with insulin resistance. The replacement or regeneration of beta cells can effectively reverse diabetes in humans and rodents. Therefore, the identification of novel small molecules that promote pancreatic beta-cell proliferation is an attractive approach for diabetic therapy. While numerous hormones, small molecules, and growth factors are able to drive rodent beta cells to replicate, only a few small molecules have demonstrated the ability to stimulate human beta-cell proliferation. Hence, there is an urgent need for therapeutic agents that induce regeneration and expansion of adult human beta cells. Here, we describe a detailed protocol for coating chamber slides, culturing primary islets, performing islet cell disassociation, seeding cells on chamber slides, treating islet cells with compounds or infecting them with adenovirus, immunostaining of proliferation markers and imaging, and data analysis.

Key words

Diabetes Human pancreatic beta cell Proliferation Diabetes therapeutics Human islets Drug development 

Notes

Acknowledgements

The authors thank Dr. Andrew Stewart and the members of the Stewart lab, Dr. Adolfo Garcia-Ocaña (all at Icahn School of Medicine at Mount Sinai, New York, NY), for invaluable and continuous insight. The authors thank the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases Integrated Islet Distribution Program and Dr. Tatsuya Kin (Alberta Diabetes Institute, Edmonton, Alberta, Canada) for providing human islets. This work was supported by JDRF grant 2-SRA-2015-62-Q-R; National Institutes of Health grants R-01 DK105015 and T32 GM 062754; and the Human Islet and Adenovirus Core of the Einstein-Mount Sinai Diabetes Research Center P30 DK020541-38.

References

  1. 1.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Buter PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefGoogle Scholar
  2. 2.
    Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368CrossRefGoogle Scholar
  3. 3.
    Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A et al (2012) Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97:3197–3206CrossRefGoogle Scholar
  4. 4.
    Matveyenko AV, Butler PC (2008) Relationship between beta-cell mass and diabetes onset. Diab. Obes Metab 10:23–31CrossRefGoogle Scholar
  5. 5.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228CrossRefGoogle Scholar
  6. 6.
    Bleich D, Jackson RA, Soeldner JS, Eisenbarth GS (1990) Analysis of metabolic progression to type I diabetes in ICA+ relatives of patients with type I diabetes. Diabetes Care 13:111–118CrossRefGoogle Scholar
  7. 7.
    Lindgren CM, McCarthy MI (2008) Mechanisms of disease: genetic insights into the etiology of type 2 diabetes and obesity. Nat Clin Pract Endocrinol Metab 4:156–163CrossRefGoogle Scholar
  8. 8.
    Pepper AR, Gala-Lopez B, Ziff O, Shapiro AJ (2013) Current status of clinical islet transplantation. World J Transplant 3:48–53CrossRefGoogle Scholar
  9. 9.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238CrossRefGoogle Scholar
  10. 10.
    Fiaschi-Taesch NM, Kleinberger JW, Salim FG, Troxell R, Wills R, Tanwir M et al (2013) Human pancreatic beta-cell G1/S molecule cell cycle atlas. Diabetes 62:2450–2459CrossRefGoogle Scholar
  11. 11.
    Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 22:311–338CrossRefGoogle Scholar
  12. 12.
    Takane KK, Kleinberger JW, Salim FG, Fiaschi-Taesch NM, Stewart AF (2012) Regulated and reversible induction of adult human beta-cell replication. Diabetes 61:418–424CrossRefGoogle Scholar
  13. 13.
    Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420CrossRefGoogle Scholar
  14. 14.
    Preusser M, Heinzl H, Gelpi E, Höftberger R, Fischer I, Pipp I et al (2008) Ki67 index in intracranial ependymoma: a promising histopathological candidate biomarker. Histopathology 53:39–47CrossRefGoogle Scholar
  15. 15.
    Endl E, Steinbach P, Knüchel R, Hofstädter F (1997) Analysis of cell cycle-related Ki-67 and p120 expression by flow cytometric BrdUrd-Hoechst/7AAD and immunolabeling technique. Cytometry 29:233–241CrossRefGoogle Scholar
  16. 16.
    Healy S, Khan P, He S, Davie JR (2012) Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective. Biochem Cell Biol 90:39–54CrossRefGoogle Scholar
  17. 17.
    Aamodt KI, Aramandla R, Brown JJ, Fiaschi-Taesch NM, Wang P, Stewart AF et al (2016) Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration. Am J Phys Endocrinol Metab 311:E859–E868CrossRefGoogle Scholar
  18. 18.
    Dirice E, Walpita D, Vetere A, Meier BC, Kahraman S, Hu J et al (2016) Inhibition of DYRK1A stimulates human beta-cell proliferation. Diabetes 65:1660–1671CrossRefGoogle Scholar
  19. 19.
    Shen W, Taylor B, Jin Q, Nguyen-Tran V, Meeusen S, Zhang YQ et al (2015) Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun 6:8372CrossRefGoogle Scholar
  20. 20.
    Wang P, Alvarez-Perez J-C, Felsenfeld DP, Liu H, Sivendran S, Bender A et al (2015) A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med 21:383–388CrossRefGoogle Scholar
  21. 21.
    Ricordi C, Rastellini C (2000) Methods in pancreatic islet separation. In: Methods in cell transplantation. RG Landes, Austin, pp 433–438Google Scholar
  22. 22.
    Walpita D, Wagner BK (2014) Evaluation of compounds in primary human islet cell culture. Curr Prot. Chem Biol 6:157–168Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Courtney A. Ackeifi
    • 1
  • Ethan A. Swartz
    • 1
  • Peng Wang
    • 1
  1. 1.Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations