Skip to main content

Protocols for Studies on TMPRSS2/ERG in Prostate Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1786))

Abstract

TMPRSS2/ERG is the most common type of gene fusions found in human prostate cancer. There are two important features of TMPRSS2/ERG fusions. One is that these gene fusions lead to ectopic expression of ERG, an ETS family transcription factor, in prostate epithelial cells from the 5′ control region of an androgen/estrogen dual-responsive gene, TMPRSS2; the other is that ~60% of these fusions are generated via intrachromosomal deletion of the interstitial region between TMPRSS2 and ERG. To recapitulate these important aspects of TMPRSS2/ERG fusions, we generated several TMPRSS2/ERG knockin mouse models based on the endogenous Tmprss2 locus. We found that TMPRSS2/ERG represents an early event in prostate tumorigenesis, by sensitizing prostate cells for cooperation with other oncogenic events, such as PTEN-deficiency. We also found that the interstitial region between TMPRSS2 and ERG harbors at least one prostate tumor suppressor, ETS2, whose loss contributes to prostate cancer progression. In this protocol, we describe how these knockin mouse models can be utilized to study roles of TMPRSS2/ERG fusions in prostate cancer development both in vivo and in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8(7):497–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  3. Teixeira MR (2008) Chromosome mechanisms giving rise to the TMPRSS2-ERG fusion oncogene in prostate cancer and HGPIN lesions. Am J Surg Pathol 32(4):642–644.; author reply 644. https://doi.org/10.1097/PAS.0b013e31815b6056

    Article  PubMed  Google Scholar 

  4. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J (2006) TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66(22):10658–10663

    Article  PubMed  CAS  Google Scholar 

  5. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta KG, Kuefer R, Vessella R, Sun XW, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66(17):8337–8341

    Article  PubMed  CAS  Google Scholar 

  6. Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA (2006) Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8(6):465–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andren O, Johnson LA, Tang J, Adami HO, Calza S, Chinnaiyan AM, Rhodes D, Tomlins S, Fall K, Mucci LA, Kantoff PW, Stampfer MJ, Andersson SO, Varenhorst E, Johansson JE, Brown M, Golub TR, Rubin MA (2008) Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 100(11):815–825

    Article  PubMed  CAS  Google Scholar 

  8. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, Shaheduzzaman S, Tan SH, Vaidyanathan G, Whitman E, Hawksworth DJ, Chen Y, Nau M, Patel V, Vahey M, Gutkind JS, Sreenath T, Petrovics G, Sesterhenn IA, McLeod DG, Srivastava S (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27(40):5348–5353. onc2008183 [pii]. https://doi.org/10.1038/onc.2008.183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10(2):177–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, Varmeh S, Scardino PT, Cordon-Cardo C, Gerald W, Pandolfi PP (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41(5):619–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, Gao D, Sirota I, Carver BS, Wongvipat J, Scher HI, Zheng D, Sawyers CL (2013) ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med 19(8):1023–1029. nm.3216 [pii]. https://doi.org/10.1038/nm.3216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, Taylor BS, Sander C, Cardiff RD, Couto SS, Gerald WL, Sawyers CL (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41(5):524–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, Nelson PS, Vasioukhin V (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 105(6):2105–2110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON (2009) ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci U S A 106(30):12465–12470

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, Kim J, Nguyen M, Zhang X, Godinho FJ, Bronson RT, Mucci LA, Loda M, Yuan GC, Orkin SH, Li Z (2013) ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 27(6):683–698. 27/6/683 [pii]. https://doi.org/10.1101/gad.211011.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Linn DE, Penney KL, Bronson RT, Mucci LA, Li Z (2016) Deletion of interstitial genes between TMPRSS2 and ERG promotes prostate cancer progression. Cancer Res 76(7):1869–1881. https://doi.org/10.1158/0008-5472.CAN-15-1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Goldstein AS, Drake JM, Burnes DL, Finley DS, Zhang H, Reiter RE, Huang J, Witte ON (2011) Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat Protoc 6(5):656–667. nprot.2011.317 [pii]. https://doi.org/10.1038/nprot.2011.317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Linn DE, Bronson RT, Li Z (2015) Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models. PLoS One 10(3):e0120628. https://doi.org/10.1371/journal.pone.0120628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, Simons BW, Ward JM, Robinson BD, Chu GC, Loda M, Thomas G, Borowsky A, Cardiff RD (2013) Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res 73(9):2718–2736. 0008-5472.CAN-12-4213 [pii]. https://doi.org/10.1158/0008-5472.CAN-12-4213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON (2010) Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 5(4):702–713. nprot.2010.11 [pii]. https://doi.org/10.1038/nprot.2010.11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 104(1):181–186

    Article  PubMed  CAS  Google Scholar 

  23. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, Badani KK, McKiernan JM, Benson MC, Hibshoosh H, Shen MM (2014) Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol 16(10):951–961., 951–954. https://doi.org/10.1038/ncb3047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, Wongvipat J, Kossai M, Ramazanoglu S, Barboza LP, Di W, Cao Z, Zhang QF, Sirota I, Ran L, MacDonald TY, Beltran H, Mosquera JM, Touijer KA, Scardino PT, Laudone VP, Curtis KR, Rathkopf DE, Morris MJ, Danila DC, Slovin SF, Solomon SB, Eastham JA, Chi P, Carver B, Rubin MA, Scher HI, Clevers H, Sawyers CL, Chen Y (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187. https://doi.org/10.1016/j.cell.2014.08.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, Vries RG, Cuppen E, Chen Y, Sawyers CL, Clevers HC (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175. https://doi.org/10.1016/j.cell.2014.08.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, Clevers H (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11(2):347–358. https://doi.org/10.1038/nprot.2016.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, Morrissey C, Corey E, Montgomery B, Mostaghel E, Clegg N, Coleman I, Brown CM, Schneider EL, Craik C, Simon JA, Bedalov A, Nelson PS (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4(11):1310–1325. https://doi.org/10.1158/2159-8290.CD-13-1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Career Development Award from Dana-Farber/Harvard Cancer Center Prostate Cancer SPORE (P50 CA090381) and by Idea Development Awards from Department of Defense (W81XWH-11-1-0329, W81XWH-15-1-0546) to Z.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pakula, H., Linn, D.E., Schmidt, D.R., Van Gorsel, M., Vander Heiden, M.G., Li, Z. (2018). Protocols for Studies on TMPRSS2/ERG in Prostate Cancer. In: Culig, Z. (eds) Prostate Cancer. Methods in Molecular Biology, vol 1786. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7845-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7845-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7843-4

  • Online ISBN: 978-1-4939-7845-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics