Protocols for Tissue Microarrays in Prostate Cancer Studies

  • Tatjana Vlajnic
  • Serenella Eppenberger-Castori
  • Lukas BubendorfEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1786)


Tissue microarray (TMA) technology is a method for high-throughput analysis of tissue biomarkers, commonly used in translational cancer research. TMAs allow performing a variety of in situ applications on hundreds of tissue samples simultaneously using the same protocols as for conventional slides. Thereby, precious material from patient samples remains largely preserved while costs in resources and time in laboratory processing decrease. Therefore, a TMA is a powerful tool to identify and study biomarkers that may have a potential diagnostic, prognostic, and predictive value. Depending on the research question, there are different types of TMAs, such as progression TMA, outcome TMA, and tumor heterogeneity TMA. Since the first introduction of the TMA method almost 20 years ago, most laboratories used manual tissue arrayers for manufacturing. Nowadays, automatic or semiautomatic devices are commercially available, which largely facilitates the technical construction. However, preparatory work remains the most time-consuming part in preparing TMAs. This chapter focuses on issues involved in design and construction of prostate cancer TMAs.

Key words

Tissue microarray TMA Tissue arrayer Immunohistochemistry In situ hybridization Prostate cancer Tumor heterogeneity 


  1. 1.
    Battifora H (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55(2):244–248. Epub 1986/08/01PubMedGoogle Scholar
  2. 2.
    Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847. Epub 1998/07/14CrossRefPubMedGoogle Scholar
  3. 3.
    Grasso CS, Wu YM, Robinson DR et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243. Epub 2012/06/23CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barbieri CE, Bangma CH, Bjartell A et al (2013) The mutational landscape of prostate cancer. Eur Urol 64(4):567–576. Epub 2013/06/14CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gsponer JR, Braun M, Scheble VJ et al (2014) ERG rearrangement and protein expression in the progression to castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 17(2):126–131. Epub 2014/01/29CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Minner S, Gartner M, Freudenthaler F et al (2013) Marked heterogeneity of ERG expression in large primary prostate cancers. Modern Pathol 26(1):106–116. Epub 2012/08/18CrossRefGoogle Scholar
  7. 7.
    Epstein JI, Amin MB, Beltran H et al (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38(6):756–767. Epub 2014/04/08CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Antonarakis ES, Lu C, Wang H et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038. Epub 2014/09/04CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kuefer R, Hofer MD, Gschwend JE, Rubin MA (2004) Tissue microarrays. High-throughput procedures to verify potential biomarkers. Der Urologe Ausg A 43(6):659–667. Epub 2004/04/27. Tissue-microarrays. Ein Hochdurchsatzverfahren zur Verifizierung potenzieller BiomarkerCrossRefPubMedGoogle Scholar
  10. 10.
    Bubendorf L, Kolmer M, Kononen J et al (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91(20):1758–1764. Epub 1999/10/21CrossRefPubMedGoogle Scholar
  11. 11.
    Gately K, Kerr K, O'Byrne K (2011) Design construction, and analysis of cell line arrays and tissue microarrays for gene expression analysis. Methods Mol Biol 784:139–153. Epub 2011/09/08CrossRefPubMedGoogle Scholar
  12. 12.
    Chandler I, Houlston R, Landberg G (2011) A practical guide to constructing and using tissue microarrays. Methods Mol Biol 675:363–373. Epub 2010/10/16CrossRefPubMedGoogle Scholar
  13. 13.
    Jaraj SJ, Egevad L (2010) Formalin fixation and immunoreactivity in prostate cancer and benign prostatic tissues. APMIS 118(5):383–388. Epub 2010/05/19CrossRefPubMedGoogle Scholar
  14. 14.
    Jonmarker S, Valdman A, Lindberg A, Hellstrom M, Egevad L (2006) Tissue shrinkage after fixation with formalin injection of prostatectomy specimens. Virchows Archiv 449(3):297–301. Epub 2006/08/16CrossRefPubMedGoogle Scholar
  15. 15.
    Vlajnic T, Oeggerli M, Rentsch C et al (2014) Ceramic foam plates: a new tool for processing fresh radical prostatectomy specimens. Virchows Archiv 465(6):637–642. Epub 2014/10/18CrossRefPubMedGoogle Scholar
  16. 16.
    McCarthy F, Dennis N, Flohr P, Jhavar S, Parker C, Cooper CS (2011) High-density tissue microarrays from prostate needle biopsies. J Clin Pathol 64(1):88–90. Epub 2010/11/18CrossRefPubMedGoogle Scholar
  17. 17.
    Fridman E, Daya D, Srigley J, Whelan KF, Lu JP, Pinthus JH (2011) Construction of tissue micro array from prostate needle biopsies using the vertical clustering re-arrangement technique. Prostate 71(13):1374–1381. Epub 2011/02/11CrossRefPubMedGoogle Scholar
  18. 18.
    Komiya A, Kato T, Hori T, Fukuoka J, Yasuda K, Fuse H (2014) Application of a new technique, spiral tissue microarrays constructed using needle biopsy specimens, to prostate cancer research. Int J Oncol 44(1):195–202. Epub 2013/11/14CrossRefPubMedGoogle Scholar
  19. 19.
    Fejzo MS, Slamon DJ (2010) Tissue microarrays from frozen tissues-OCT technique. Methods Mol Biol 664:73–80. Epub 2010/08/07CrossRefPubMedGoogle Scholar
  20. 20.
    Torhorst J, Bucher C, Kononen J et al (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159(6):2249–2256. Epub 2001/12/06CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ruiz C, Seibt S, Al KK et al (2006) Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 118(9):2190–2194. Epub 2005/12/07CrossRefPubMedGoogle Scholar
  22. 22.
    Nocito A, Bubendorf L, Tinner EM et al (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194(3):349–357. Epub 2001/07/06CrossRefPubMedGoogle Scholar
  23. 23.
    Moch H, Schraml P, Bubendorf L et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154(4):981–986. Epub 1999/05/11CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barlund M, Forozan F, Kononen J et al (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92(15):1252–1259. Epub 2000/08/03CrossRefPubMedGoogle Scholar
  25. 25.
    Schlomm T, Kirstein P, Iwers L et al (2007) Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 13(22 Pt 1):6579–6584. Epub 2007/11/17CrossRefPubMedGoogle Scholar
  26. 26.
    Erbersdobler A, Isbarn H, Steiner I et al (2009) Predictive value of prostate-specific antigen expression in prostate cancer: a tissue microarray study. Urology 74(5):1169–1173. Epub 2009/05/30CrossRefPubMedGoogle Scholar
  27. 27.
    Schlomm T, Iwers L, Kirstein P et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Modern Pathol 21(11):1371–1378. Epub 2008/06/17CrossRefGoogle Scholar
  28. 28.
    Fleischmann A, Schlomm T, Huland H et al (2008) Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients. Clin Cancer Res 14(23):7838–7842. Epub 2008/12/03CrossRefPubMedGoogle Scholar
  29. 29.
    Fleischmann A, Schlomm T, Kollermann J et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981. Epub 2009/03/11CrossRefPubMedGoogle Scholar
  30. 30.
    Melling N, Harutyunyan L, Hube-Magg C et al (2015) High-level HOOK3 expression is an independent predictor of poor prognosis associated with genomic instability in prostate cancer. PLoS One 10(7):e0134614. Epub 2015/08/01CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grupp K, Boumesli R, Tsourlakis MC et al (2014) The prognostic impact of high Nijmegen breakage syndrome (NBS1) gene expression in ERG-negative prostate cancers lacking PTEN deletion is driven by KPNA2 expression. Int J Cancer 135(6):1399–1407. Epub 2014/02/11CrossRefPubMedGoogle Scholar
  32. 32.
    Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81(10):1331–1338. Epub 2001/10/13CrossRefPubMedGoogle Scholar
  33. 33.
    Rubin MA, Dunn R, Strawderman M, Pienta KJ (2002) Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol 26(3):312–319. Epub 2002/02/23CrossRefPubMedGoogle Scholar
  34. 34.
    Dolled-Filhart M, Gustavson M, Camp RL, Rimm DL, Tonkinson JL, Christiansen J (2010) Automated analysis of tissue microarrays. Methods Mol Biol 664:151–162. Epub 2010/08/07CrossRefPubMedGoogle Scholar
  35. 35.
    Krenacs T, Ficsor L, Varga SV, Angeli V, Molnar B (2010) Digital microscopy for boosting database integration and analysis in TMA studies. Methods Mol Biol 664:163–175. Epub 2010/08/07CrossRefPubMedGoogle Scholar
  36. 36.
    AB M (2016) MySQL. Open-source relational database management system [cited 1 Jan 2016]Google Scholar
  37. 37.
    Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 29(9):1228–1242. Epub 2005/08/13CrossRefPubMedGoogle Scholar
  38. 38.
    Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA (2015) The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 40(2):244–252. Epub 2015/10/23Google Scholar
  39. 39.
    Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J (2005) Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5:45. Epub 2005/05/17CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jones AC, Antillon KS, Jenkins SM et al (2015) Prostate field cancerization: deregulated expression of macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) in tumor adjacent tissue. PLoS One 10(3):e0119314. Epub 2015/03/15CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gerlinger M, Rowan AJ, Horswell SL et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. Epub 2012/03/09CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tatjana Vlajnic
    • 1
  • Serenella Eppenberger-Castori
    • 1
  • Lukas Bubendorf
    • 1
    Email author
  1. 1.Institute of PathologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations