Advertisement

Protocols for Migration and Invasion Studies in Prostate Cancer

  • Arjanneke F. van de Merbel
  • Geertje van der Horst
  • Jeroen T. Buijs
  • Gabri van der PluijmEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1786)

Abstract

Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.

This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.

Key words

Prostate cancer Migration Invasion Transwell migration assay Transwell invasion assay 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29.  https://doi.org/10.3322/caac.21254 CrossRefPubMedGoogle Scholar
  2. 2.
    Bastian PJ, Carter BH, Bjartell A, Seitz M, Stanislaus P, Montorsi F, Stief CG, Schroder F (2009) Insignificant prostate cancer and active surveillance: from definition to clinical implications. Eur Urol 55(6):1321–1330.  https://doi.org/10.1016/j.eururo.2009.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pienta KJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12(6):1665–1671.  https://doi.org/10.1158/1078-0432.ccr-06-0067 CrossRefPubMedGoogle Scholar
  4. 4.
    Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6(2):76–85.  https://doi.org/10.1038/ncpuro1296 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457.  https://doi.org/10.1038/nrm2720. nrm2720 [pii]CrossRefPubMedGoogle Scholar
  6. 6.
    Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454.  https://doi.org/10.1038/sj.onc.1209091 CrossRefPubMedGoogle Scholar
  7. 7.
    Nakaya Y, Sheng G (2013) EMT in developmental morphogenesis. Cancer Lett 341(1):9–15.  https://doi.org/10.1016/j.canlet.2013.02.037 CrossRefPubMedGoogle Scholar
  8. 8.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784.  https://doi.org/10.1172/jci20530 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van der Pluijm G (2011) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48(1):37–43.  https://doi.org/10.1016/j.bone.2010.07.023. S8756-3282(10)01367-0 [pii]CrossRefPubMedGoogle Scholar
  10. 10.
    Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383.  https://doi.org/10.1002/jcp.21223 CrossRefPubMedGoogle Scholar
  11. 11.
    Williams LV, Veliceasa D, Vinokour E, Volpert OV (2013) miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One 8(12):e83991.  https://doi.org/10.1371/journal.pone.0083991 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, Sarkar FH (2009) miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells (Dayton, Ohio) 27(8):1712–1721.  https://doi.org/10.1002/stem.101 CrossRefGoogle Scholar
  13. 13.
    Li P, Yang R, Gao WQ (2014) Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 13:55.  https://doi.org/10.1186/1476-4598-13-55 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nauseef JT, Henry MD (2011) Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 8(8):428–439.  https://doi.org/10.1038/nrurol.2011.85 CrossRefPubMedGoogle Scholar
  15. 15.
    Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25(9):556–566.  https://doi.org/10.1016/j.tcb.2015.06.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17(3):276–287.  https://doi.org/10.1038/ncb3115 CrossRefPubMedGoogle Scholar
  17. 17.
    Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122(Pt 18):203–3208.  https://doi.org/10.1242/jcs.036525 CrossRefGoogle Scholar
  18. 18.
    Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24.  https://doi.org/10.1016/j.mrrev.2012.08.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Keller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17(5):533–541.  https://doi.org/10.1016/j.ceb.2005.08.006 CrossRefPubMedGoogle Scholar
  20. 20.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV (2014) In vitro cell migration and invasion assays. J Vis Exp (88).  https://doi.org/10.3791/51046
  22. 22.
    Yu D, Zhong Y, Li X et al (2015) ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells in vitro. Oncotarget 6(40):42687–42703.  https://doi.org/10.18632/oncotarget.5883 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang Z, Gao Y, Liu Y, Chen J, Wang J, Gan S, Xu D, Cui X (2015) Tectonic1 contributes to the growth and migration of prostate cancer cells in vitro. Int J Mol Med 36(4):931–938.  https://doi.org/10.3892/ijmm.2015.2313 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Banerjee S, Li G, Li Y, Gaughan C, Baskar D, Parker Y, Lindner DJ, Weiss SR, Silverman RH (2015) RNase L is a negative regulator of cell migration. Oncotarget 6(42):44360–44372.  https://doi.org/10.18632/oncotarget.6246 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guo W, Keener AL, Jing Y, Cai L, Ai J, Zhang J, Fisher AL, Fu G, Wang Z (2015) FOXA1 modulates EAF2 regulation of AR transcriptional activity, cell proliferation, and migration in prostate cancer cells. Prostate 75(9):976–987.  https://doi.org/10.1002/pros.22982 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zoni E, van der Horst G, van de Merbel AF et al (2015) miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of alphav- and alpha6-integrin expression. Cancer Res 75(11):2326–2336.  https://doi.org/10.1158/0008-5472.can-14-2155 CrossRefPubMedGoogle Scholar
  27. 27.
    Kroon J, in’t Veld LS, Buijs JT, Cheung H, van der Horst G, van der Pluijm G (2014) Glycogen synthase kinase-3beta inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget 5(19):8986–8994.  https://doi.org/10.18632/oncotarget.1510 CrossRefPubMedGoogle Scholar
  28. 28.
    van den Hoogen C, van der Horst G, Cheung H et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173.  https://doi.org/10.1158/0008-5472.can-09-3806 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159(1):109–113CrossRefPubMedGoogle Scholar
  30. 30.
    Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro 12(3):251–258CrossRefPubMedGoogle Scholar
  31. 31.
    Sun C, Zhao X, Xu K, Gong J, Liu W, Ding W, Gou Y, Xia G, Ding Q (2011) Periostin: a promising target of therapeutical intervention for prostate cancer. J Transl Med 9:99.  https://doi.org/10.1186/1479-5876-9-99 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol (Clifton, NJ) 294:23–29Google Scholar
  33. 33.
    Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333.  https://doi.org/10.1038/nprot.2007.30 CrossRefPubMedGoogle Scholar
  34. 34.
    Menon MB, Ronkina N, Schwermann J, Kotlyarov A, Gaestel M (2009) Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration. Cell Motil Cytoskeleton 66(12):1041–1047.  https://doi.org/10.1002/cm.20418 CrossRefPubMedGoogle Scholar
  35. 35.
    Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21.  https://doi.org/10.1186/1472-6750-4-21 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Marshall J (2011) Transwell((R)) invasion assays. Methods Mol Biol (Clifton, NJ) 769:97–110.  https://doi.org/10.1007/978-1-61779-207-6_8 CrossRefGoogle Scholar
  37. 37.
    Pawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE (2007) Integrin alpha6 cleavage: a novel modification to modulate cell migration. Exp Cell Res 313(6):1080–1089.  https://doi.org/10.1016/j.yexcr.2007.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gang X, Wang G, Huang H (2015) Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion. Prostate 75(6):561–572.  https://doi.org/10.1002/pros.22935 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Albini A, Benelli R (2007) The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc 2(3):504–511.  https://doi.org/10.1038/nprot.2006.466 CrossRefPubMedGoogle Scholar
  40. 40.
    Albini A, Benelli R, Noonan DM, Brigati C (2004) The “chemoinvasion assay”: a tool to study tumor and endothelial cell invasion of basement membranes. Int J Dev Biol 48(5-6):563–571.  https://doi.org/10.1387/ijdb.041822aa CrossRefPubMedGoogle Scholar
  41. 41.
    Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW (1994) Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer J 57(3):406–412CrossRefGoogle Scholar
  42. 42.
    Wu TT, Sikes RA, Cui Q et al (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 77(6):887–894CrossRefPubMedGoogle Scholar
  43. 43.
    Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC, Chung LW (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54(10):2577–2581PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arjanneke F. van de Merbel
    • 1
  • Geertje van der Horst
    • 1
  • Jeroen T. Buijs
    • 1
  • Gabri van der Pluijm
    • 1
    Email author
  1. 1.Department of UrologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations