NMR-Based Prostate Cancer Metabolomics

  • Leslie R. Euceda
  • Maria K. Andersen
  • May-Britt Tessem
  • Siver A. Moestue
  • Maria T. Grinde
  • Tone F. BathenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1786)


Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer-related death among men, worldwide. A major unsolved clinical challenge in prostate cancer is the ability to accurately distinguish indolent cancer types from the aggressive ones. Reprogramming of metabolism is now a widely accepted hallmark of cancer development, where cancer cells must be able to convert nutrients to biomass while maintaining energy production. Metabolomics is the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues, or organisms. Nuclear magnetic resonance (NMR) spectroscopy is commonly applied in metabolomics studies of cancer. This chapter provides protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine), and intact tissue, with concurrent advice for optimal biobanking and sample preparation procedures.

Key words

Biobanking Biofluids analysis Cell extracts analysis Metabolite quantification Metabolomics NMR pulse sequences NMR spectroscopy Prostate cancer Sample preparation Targeted metabolic pathway analysis Tissue analysis 


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. CrossRefGoogle Scholar
  3. 3.
    Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T et al (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4):e62375. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS (2010) Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res 70(17):6692–6696. CrossRefPubMedGoogle Scholar
  5. 5.
    Hansen AF, Sandsmark E, Rye MB et al (2016) Presence of TMPRSS2-ERG is associated with alterations of the metabolic profile in human prostate cancer. Oncotarget 7(27):42071–42085. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rye MB, Bertilsson H, Drablos F, Angelsen A, Bathen TF, Tessem MB (2014) Gene signatures ESC, MYC and ERG-fusion are early markers of a potentially dangerous subtype of prostate cancer. BMC Med Genet 7:50. CrossRefGoogle Scholar
  7. 7.
    Sandsmark E, Hansen AF, Selnaes KM et al (2017) A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget 8(6):9572–9586. CrossRefPubMedGoogle Scholar
  8. 8.
    Tessem M-B, Bertilsson H, Angelsen A, Bathen TF, Drabløs F, Rye MB (2016) A balanced tissue composition reveals new metabolic and gene expression markers in prostate cancer. PLoS One 11(4):e0153727. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Braadland P, Giskeødegård GF, Sandsmark E et al (2017) Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy. Br J Cancer 117(11):1656–1664CrossRefPubMedGoogle Scholar
  10. 10.
    Bezabeh T, Ijare OB, Nikulin AE, Somorjai RL, Smith ICP (2014) MRS-based Metabolomics in cancer research. Magn Reson Insights 7:1–14. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Giskeodegard GF, Cao MD, Bathen TF (2015) High-resolution magic-angle-spinning NMR spectroscopy of intact tissue. Methods Mol Biol 1277:37–50. CrossRefPubMedGoogle Scholar
  12. 12.
    Mallol R, Rodriguez MA, Brezmes J, Masana L, Correig X (2013) Human serum/plasma lipoprotein analysis by NMR: application to the study of diabetic dyslipidemia. Prog Nucl Magn Reson Spectrosc 70:1–24. CrossRefPubMedGoogle Scholar
  13. 13.
    Bertilsson H, Angelsen A, Viset T, Skogseth H, Tessem MB, Halgunset J (2011) A new method to provide a fresh frozen prostate slice suitable for gene expression study and MR spectroscopy. Prostate 71(5):461–469. CrossRefPubMedGoogle Scholar
  14. 14.
    Haukaas TH, Moestue SA, Vettukattil R et al (2016) Impact of freezing delay time on tissue samples for metabolomic studies. Front Oncol 6:17. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jackson D, Rowlinson RA, Eaton CK et al (2006) Prostatic tissue protein alterations due to delayed time to freezing. Proteomics 6(13):3901–3908. CrossRefPubMedGoogle Scholar
  16. 16.
    Fang M, Ivanisevic J, Benton HP et al (2015) Thermal degradation of small molecules: a global metabolomic investigation. Anal Chem 87(21):10935–10941. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sitter B, Bathen TF, Tessem M-B, Gribbestad IS (2009) High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc 54(3):239–254. CrossRefGoogle Scholar
  18. 18.
    Andrew ER (1971) The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog Nucl Magn Reson Spectrosc 8(1):1–39. CrossRefGoogle Scholar
  19. 19.
    Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2(7):285–287CrossRefGoogle Scholar
  20. 20.
    Le Gall G (2015) NMR spectroscopy of biofluids and extracts. Methods Mol Biol 1277:29–36. CrossRefPubMedGoogle Scholar
  21. 21.
    McKay RT (2011) How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson A 38A(5):197–220. CrossRefGoogle Scholar
  22. 22.
    Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814(8):942–968. CrossRefPubMedGoogle Scholar
  23. 23.
    Van QN, Chmurny GN, Veenstra TD (2003) The depletion of protein signals in metabonomics analysis with the WET–CPMG pulse sequence. Biochem Biophys Res Commun 301(4):952–959. CrossRefPubMedGoogle Scholar
  24. 24.
    Liu M, Nicholson JK, Lindon JC (1996) High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem 68(19):3370–3376. CrossRefPubMedGoogle Scholar
  25. 25.
    Huang Y, Cai S, Zhang Z, Chen Z (2014) High-resolution two-dimensional J-resolved NMR spectroscopy for biological systems. Biophys J 106(9):2061–2070. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dona AC, Kyriakides M, Scott F et al (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 14:135–153. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679CrossRefPubMedGoogle Scholar
  28. 28.
    Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA (2010) Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 9:66. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Swanson MG, Zektzer AS, Tabatabai ZL et al (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55(6):1257–1264. CrossRefPubMedGoogle Scholar
  30. 30.
    Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71(13):2554–2557. CrossRefPubMedGoogle Scholar
  31. 31.
    Albers MJ, Butler TN, Rahwa I et al (2009) Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue. Magn Reson Med 61(3):525–532. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128(8):2571–2576. CrossRefPubMedGoogle Scholar
  33. 33.
    Bharti SK, Sinha N, Joshi BS, Mandal SK, Roy R, Khetrapal CL (2008) Improved quantification from 1H-NMR spectra using reduced repetition times. Metabolomics 4(4):367–376. CrossRefGoogle Scholar
  34. 34.
    Emir UE, Deelchand D, Henry PG, Terpstra M (2011) Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed 24(3):263–269. CrossRefPubMedGoogle Scholar
  35. 35.
    Maher AD, Zirah SFM, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem 79(14):5204–5211. CrossRefPubMedGoogle Scholar
  36. 36.
    Provencher S (2016) LCModel & LCMgui user’s manual. LCMODEL Inc. Accessed 28 Aug 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leslie R. Euceda
    • 1
  • Maria K. Andersen
    • 1
  • May-Britt Tessem
    • 1
  • Siver A. Moestue
    • 2
    • 3
  • Maria T. Grinde
    • 1
  • Tone F. Bathen
    • 4
    Email author
  1. 1.Department of Circulation and Medical ImagingNTNU - The Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Clinical and Molecular MedicineNTNU - The Norwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Pharmacy, Faculty of Health SciencesNord UniversityBodøNorway
  4. 4.Department of Circulation and Medical ImagingNTNU - The Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations