A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels

  • Christoph Meinert
  • Christina Theodoropoulos
  • Travis J. Klein
  • Dietmar W. Hutmacher
  • Daniela LoessnerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1786)


Modern tissue engineering technologies have delivered tools to recreate a cell’s naturally occurring niche in vitro and to investigate normal and pathological cell–cell and cell–niche interactions. Hydrogel biomaterials mimic crucial properties of native extracellular matrices, including mechanical support, cell adhesion sites and proteolytic degradability. As such, they are applied as 3D cell culture platforms to replicate tissue-like architectures observed in vivo, allowing physiologically relevant cell behaviors. Here we review bioengineered 3D approaches used for prostate and breast cancer. Furthermore, we describe the synthesis and use of gelatin methacryloyl-based hydrogels as in vitro 3D cancer model. This platform is used to engineer the microenvironments for prostate and breast cancer cells to study processes regulating spheroid formation, cell functions and responses to therapeutic compounds. Collectively, these bioengineered 3D approaches provide cell biologists with innovative pre-clinical tools that integrate the complexity of the disease seen in patients to advance our knowledge of cancer cell physiology and the contribution of a tumor’s surrounding milieu.

Key words

Hydrogel Prostate cancer Breast cancer 3D model Spheroid 


  1. 1.
    Abbott RD, Kaplan DL (2015) Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 33(7):401–407. CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Rijal G, Li W (2016) 3D scaffolds in breast cancer research. Biomaterials 81:135–156. CrossRefPubMedGoogle Scholar
  3. 3.
    Nyga A, Neves J, Stamati K, Loizidou M, Emberton M, Cheema U (2016) The next level of 3D tumour models: immunocompetence. Drug Discov Today 21:1421–1428. CrossRefPubMedGoogle Scholar
  4. 4.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. nrc2618 [pii]. CrossRefGoogle Scholar
  5. 5.
    Albini A (2016) Extracellular matrix invasion in metastases and angiogenesis: commentary on the matrigel “Chemoinvasion Assay”. Cancer Res 76(16):4595–4597. CrossRefPubMedGoogle Scholar
  6. 6.
    Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620. CrossRefPubMedGoogle Scholar
  7. 7.
    Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, Guck J, Werner C (2016) 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 36:73–85. CrossRefPubMedGoogle Scholar
  8. 8.
    Karthaus WR, Iaquinta PJ, Drost J et al (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175. CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Gao D, Vela I, Sboner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187. CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Loessner D, Holzapfel BM, Clements JA (2014) Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv Drug Deliv Rev 79-80:193–213. CrossRefPubMedGoogle Scholar
  11. 11.
    Sieh S, Taubenberger AV, Lehman ML, Clements JA, Nelson CC, Hutmacher DW (2014) Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone 63:121–131. CrossRefPubMedGoogle Scholar
  12. 12.
    Fong EL, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM, Farach-Carson MC (2016) A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77:164–172. CrossRefPubMedGoogle Scholar
  13. 13.
    Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ (2014) A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells. Integr Biol (Camb) 6(6):627–635. CrossRefGoogle Scholar
  14. 14.
    Bersani F, Lee J, Yu M, Morris R, Desai R, Ramaswamy S, Toner M, Haber DA, Parekkadan B (2014) Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res 74(24):7229–7238. CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Chambers KF, Mosaad EM, Russell PJ, Clements JA, Doran MR (2014) 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PLoS One 9(11):e111029. CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Engel BJ, Constantinou PE, Sablatura LK, Doty NJ, Carson DD, Farach-Carson MC, Harrington DA, Zarembinski TI (2015) Multilayered, hyaluronic acid-based hydrogel formulations suitable for automated 3D high throughput drug screening of cancer-stromal cell cocultures. Adv Healthc Mater 4(11):1664–1674. CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, Mooney DJ (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978. CrossRefPubMedGoogle Scholar
  19. 19.
    DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, Stroock A, Fischbach C (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110–118. CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Onodera Y, Nam JM, Bissell MJ (2014) Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124(1):367–384. CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu W, Wang M, Fu Y, Castro NJ, Fu SW, Zhang LG (2015) Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study. Acta Biomater 14:164–174. CrossRefPubMedGoogle Scholar
  22. 22.
    Dudley DT, Li XY, Hu CY, Kleer CG, Willis AL, Weiss SJ (2014) A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc Natl Acad Sci U S A 111(41):14882–14887. CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111(7):447–452. CrossRefGoogle Scholar
  24. 24.
    Anastasov N, Hofig I, Radulovic V et al (2015) A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15:466. CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S (2016) Three-dimensional breast cancer models mimic hallmarks of size-induced tumor progression. Cancer Res 76(13):3732–3743. CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83. CrossRefPubMedGoogle Scholar
  27. 27.
    Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16(3):497–505. CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Mak M, Kamm RD, Zaman MH (2014) Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments. PLoS Comput Biol 10(11):e1003959. CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D (2014) Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10(6):2551–2562. CrossRefPubMedGoogle Scholar
  30. 30.
    Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10(1):214–223. CrossRefPubMedGoogle Scholar
  31. 31.
    Loessner D, Meinert C, Kaemmerer E et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746. CrossRefPubMedGoogle Scholar
  32. 33.
    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271. CrossRefPubMedCentralPubMedGoogle Scholar
  33. 32.
    Loessner D, Rizzi SC, Stok KS, Fuehrmann T, Hollier B, Magdolen V, Hutmacher DW, Clements JA (2013) A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread. Biomaterials 34(30):7389–7400. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christoph Meinert
    • 1
  • Christina Theodoropoulos
    • 1
  • Travis J. Klein
    • 1
  • Dietmar W. Hutmacher
    • 1
    • 2
    • 3
    • 4
  • Daniela Loessner
    • 1
    • 5
    Email author
  1. 1.Queensland University of Technology (QUT)BrisbaneAustralia
  2. 2.Australian Prostate Cancer Research Centre – QueenslandTranslational Research InstituteBrisbaneAustralia
  3. 3.George W Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Institute for Advanced StudyTechnical University of MunichMunichGermany
  5. 5.Barts Cancer InstituteQueen Mary University of LondonLondonUK

Personalised recommendations