Skip to main content

A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1786))

Abstract

Modern tissue engineering technologies have delivered tools to recreate a cell’s naturally occurring niche in vitro and to investigate normal and pathological cell–cell and cell–niche interactions. Hydrogel biomaterials mimic crucial properties of native extracellular matrices, including mechanical support, cell adhesion sites and proteolytic degradability. As such, they are applied as 3D cell culture platforms to replicate tissue-like architectures observed in vivo, allowing physiologically relevant cell behaviors. Here we review bioengineered 3D approaches used for prostate and breast cancer. Furthermore, we describe the synthesis and use of gelatin methacryloyl-based hydrogels as in vitro 3D cancer model. This platform is used to engineer the microenvironments for prostate and breast cancer cells to study processes regulating spheroid formation, cell functions and responses to therapeutic compounds. Collectively, these bioengineered 3D approaches provide cell biologists with innovative pre-clinical tools that integrate the complexity of the disease seen in patients to advance our knowledge of cancer cell physiology and the contribution of a tumor’s surrounding milieu.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abbott RD, Kaplan DL (2015) Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 33(7):401–407. https://doi.org/10.1016/j.tibtech.2015.04.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Rijal G, Li W (2016) 3D scaffolds in breast cancer research. Biomaterials 81:135–156. https://doi.org/10.1016/j.biomaterials.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  3. Nyga A, Neves J, Stamati K, Loizidou M, Emberton M, Cheema U (2016) The next level of 3D tumour models: immunocompetence. Drug Discov Today 21:1421–1428. https://doi.org/10.1016/j.drudis.2016.04.010

    Article  PubMed  Google Scholar 

  4. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. nrc2618 [pii]. https://doi.org/10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  5. Albini A (2016) Extracellular matrix invasion in metastases and angiogenesis: commentary on the matrigel “Chemoinvasion Assay”. Cancer Res 76(16):4595–4597. https://doi.org/10.1158/0008-5472.CAN-16-1971

    Article  CAS  PubMed  Google Scholar 

  6. Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620. https://doi.org/10.1016/j.biomaterials.2015.02.124

    Article  CAS  PubMed  Google Scholar 

  7. Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, Guck J, Werner C (2016) 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 36:73–85. https://doi.org/10.1016/j.actbio.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  8. Karthaus WR, Iaquinta PJ, Drost J et al (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175. https://doi.org/10.1016/j.cell.2014.08.017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Gao D, Vela I, Sboner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187. https://doi.org/10.1016/j.cell.2014.08.016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Loessner D, Holzapfel BM, Clements JA (2014) Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv Drug Deliv Rev 79-80:193–213. https://doi.org/10.1016/j.addr.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Sieh S, Taubenberger AV, Lehman ML, Clements JA, Nelson CC, Hutmacher DW (2014) Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone 63:121–131. https://doi.org/10.1016/j.bone.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Fong EL, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM, Farach-Carson MC (2016) A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77:164–172. https://doi.org/10.1016/j.biomaterials.2015.10.059

    Article  CAS  PubMed  Google Scholar 

  13. Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ (2014) A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells. Integr Biol (Camb) 6(6):627–635. https://doi.org/10.1039/c3ib40240a

    Article  CAS  Google Scholar 

  14. Bersani F, Lee J, Yu M, Morris R, Desai R, Ramaswamy S, Toner M, Haber DA, Parekkadan B (2014) Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res 74(24):7229–7238. https://doi.org/10.1158/0008-5472.CAN-14-1809

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Chambers KF, Mosaad EM, Russell PJ, Clements JA, Doran MR (2014) 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PLoS One 9(11):e111029. https://doi.org/10.1371/journal.pone.0111029

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Engel BJ, Constantinou PE, Sablatura LK, Doty NJ, Carson DD, Farach-Carson MC, Harrington DA, Zarembinski TI (2015) Multilayered, hyaluronic acid-based hydrogel formulations suitable for automated 3D high throughput drug screening of cancer-stromal cell cocultures. Adv Healthc Mater 4(11):1664–1674. https://doi.org/10.1002/adhm.201500258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. https://doi.org/10.1016/j.cell.2009.10.027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, Mooney DJ (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978. https://doi.org/10.1038/nmat4009

    Article  CAS  PubMed  Google Scholar 

  19. DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, Stroock A, Fischbach C (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110–118. https://doi.org/10.1016/j.biomaterials.2015.03.035

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Onodera Y, Nam JM, Bissell MJ (2014) Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124(1):367–384. https://doi.org/10.1172/JCI63146

    Article  CAS  PubMed  Google Scholar 

  21. Zhu W, Wang M, Fu Y, Castro NJ, Fu SW, Zhang LG (2015) Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study. Acta Biomater 14:164–174. https://doi.org/10.1016/j.actbio.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  22. Dudley DT, Li XY, Hu CY, Kleer CG, Willis AL, Weiss SJ (2014) A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc Natl Acad Sci U S A 111(41):14882–14887. https://doi.org/10.1073/pnas.1410996111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111(7):447–452. https://doi.org/10.1073/pnas.1316848111

    Article  CAS  Google Scholar 

  24. Anastasov N, Hofig I, Radulovic V et al (2015) A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15:466. https://doi.org/10.1186/s12885-015-1481-9

    Article  PubMed Central  PubMed  Google Scholar 

  25. Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S (2016) Three-dimensional breast cancer models mimic hallmarks of size-induced tumor progression. Cancer Res 76(13):3732–3743. https://doi.org/10.1158/0008-5472.CAN-15-2304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83. https://doi.org/10.1016/j.biomaterials.2015.11.039

    Article  CAS  PubMed  Google Scholar 

  27. Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16(3):497–505. https://doi.org/10.1039/c5lc01139f

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Mak M, Kamm RD, Zaman MH (2014) Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments. PLoS Comput Biol 10(11):e1003959. https://doi.org/10.1371/journal.pcbi.1003959

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D (2014) Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10(6):2551–2562. https://doi.org/10.1016/j.actbio.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  30. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10(1):214–223. https://doi.org/10.1016/j.actbio.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  31. Loessner D, Meinert C, Kaemmerer E et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746. https://doi.org/10.1038/nprot.2016.037

    Article  CAS  PubMed  Google Scholar 

  32. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Loessner D, Rizzi SC, Stok KS, Fuehrmann T, Hollier B, Magdolen V, Hutmacher DW, Clements JA (2013) A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread. Biomaterials 34(30):7389–7400. https://doi.org/10.1016/j.biomaterials.2013.06.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Loessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meinert, C., Theodoropoulos, C., Klein, T.J., Hutmacher, D.W., Loessner, D. (2018). A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels. In: Culig, Z. (eds) Prostate Cancer. Methods in Molecular Biology, vol 1786. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7845-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7845-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7843-4

  • Online ISBN: 978-1-4939-7845-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics