Skip to main content

Epitope Mapping Using Yeast Display and Next Generation Sequencing

  • Protocol
  • First Online:
Epitope Mapping Protocols

Abstract

Monoclonal antibodies are the largest class of therapeutic proteins due in part to their ability to bind an antigen with a high degree of affinity and specificity. A precise determination of their epitope is important for gaining insights into their therapeutic mechanism of action and to help differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of multiple antibodies in parallel over the course of just several weeks. This approach is based on a combination of rational library design, yeast surface display, and next generation DNA sequencing and provides quantitative insights into the epitope residues most critical for the antibody-antigen interaction. As an example, we will use this method to map the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342(2):539–550. https://doi.org/10.1016/j.jmb.2004.07.053

    Article  CAS  PubMed  Google Scholar 

  2. Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A (2004) A structural perspective on protein-protein interactions. Curr Opin Struct Biol 14(3):313–324. https://doi.org/10.1016/j.sbi.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Schneidman-Duhovny D, Rossi A, Avila-Sakar A, Kim SJ, Velazquez-Muriel J, Strop P, Liang H, Krukenberg KA, Liao M, Kim HM, Sobhanifar S, Dotsch V, Rajpal A, Pons J, Agard DA, Cheng Y, Sali A (2012) A method for integrative structure determination of protein-protein complexes. Bioinformatics 28(24):3282–3289. https://doi.org/10.1093/bioinformatics/bts628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdiche YN, Miles A, Eckman J, Foletti D, Van Blarcom TJ, Yeung YA, Pons J, Rajpal A (2014) High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity. PLoS One 9(3):e92451. https://doi.org/10.1371/journal.pone.0092451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin L, Fendly BM, Wells JA (1992) High resolution functional analysis of antibody-antigen interactions. J Mol Biol 226(3):851–865

    Article  CAS  PubMed  Google Scholar 

  6. Pons J, Rajpal A, Kirsch JF (1999) Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL-10/lysozyme interaction. Protein Sci 8(5):958–968. https://doi.org/10.1110/ps.8.5.958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sidhu SS, Fairbrother WJ, Deshayes K (2003) Exploring protein-protein interactions with phage display. Chembiochem 4(1):14–25. https://doi.org/10.1002/cbic.200390008

    Article  CAS  PubMed  Google Scholar 

  8. Wells JA (1991) Systematic mutational analyses of protein-protein interfaces. Methods Enzymol 202:390–411

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland JN, Maynard JA (2009) Characterization of a key neutralizing epitope on pertussis toxin recognized by monoclonal antibody 1B7. Biochemistry 48(50):11982–11993. https://doi.org/10.1021/bi901532z

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244(4908):1081–1085

    Article  CAS  PubMed  Google Scholar 

  11. Weiss GA, Watanabe CK, Zhong A, Goddard A, Sidhu SS (2000) Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc Natl Acad Sci U S A 97(16):8950–8954. https://doi.org/10.1073/pnas.160252097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vajdos FF, Adams CW, Breece TN, Presta LG, de Vos AM, Sidhu SS (2002) Comprehensive functional maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis. J Mol Biol 320(2):415–428. https://doi.org/10.1016/S0022-2836(02)00264-4

    Article  CAS  PubMed  Google Scholar 

  13. Skelton NJ, Koehler MF, Zobel K, Wong WL, Yeh S, Pisabarro MT, Yin JP, Lasky LA, Sidhu SS (2003) Origins of PDZ domain ligand specificity. Structure determination and mutagenesis of the Erbin PDZ domain. J Biol Chem 278(9):7645–7654. https://doi.org/10.1074/jbc.M209751200

    Article  CAS  PubMed  Google Scholar 

  14. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  15. Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409(2):253–259. https://doi.org/10.1016/j.bbrc.2011.04.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365(1):196–210. https://doi.org/10.1016/j.jmb.2006.09.084

    Article  CAS  PubMed  Google Scholar 

  17. Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Ma Z, Polakoff D, Razo J, Wilson K, Powers DB (2013) Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs 5(4):523–532. https://doi.org/10.4161/mabs.24979

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, Fields S (2010) High-resolution mapping of protein sequence-function relationships. Nat Methods 7(9):741–746. https://doi.org/10.1038/nmeth.1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos C, Myers CA, Kamisetty H, Blair P, Wilson IA, Baker D (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30(6):543–548. https://doi.org/10.1038/nbt.2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hietpas R, Roscoe B, Jiang L, Bolon DN (2012) Fitness analyses of all possible point mutations for regions of genes in yeast. Nat Protoc 7(7):1382–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Blarcom T, Rossi A, Foletti D, Sundar P, Pitts S, Bee C, Melton Witt J, Melton Z, Hasa-Moreno A, Shaughnessy L, Telman D, Zhao L, Cheung WL, Berka J, Zhai W, Strop P, Chaparro-Riggers J, Shelton DL, Pons J, Rajpal A (2015) Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. J Mol Biol 427(6 Pt B):1513–1534. https://doi.org/10.1016/j.jmb.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  22. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38–41. https://doi.org/10.1038/nprot.2007.15

    Article  CAS  PubMed  Google Scholar 

  23. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  24. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  25. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform Chapter 5:Unit 5.6. https://doi.org/10.1002/0471250953.bi0506s15

    Article  Google Scholar 

  28. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30 Suppl 1:S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  29. Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6(2):134–140. https://doi.org/10.1038/5821

    Article  CAS  PubMed  Google Scholar 

  30. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82(2):488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43(6):e37. https://doi.org/10.1093/nar/gku1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159. https://doi.org/10.1093/nar/gkq543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285(5):2177–2198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Blarcom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Blarcom, T. et al. (2018). Epitope Mapping Using Yeast Display and Next Generation Sequencing. In: Rockberg, J., Nilvebrant, J. (eds) Epitope Mapping Protocols. Methods in Molecular Biology, vol 1785. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7841-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7841-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7839-7

  • Online ISBN: 978-1-4939-7841-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics