Skip to main content

Bayesian Network to Infer Drug-Induced Apoptosis Circuits from Connectivity Map Data

  • Protocol
  • First Online:
Gene Expression Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1783))

Abstract

The Connectivity Map (CMAP) project profiled human cancer cell lines exposed to a library of anticancer compounds with the goal of connecting cancer with underlying genes and potential treatments. As most targeted anticancer therapeutics aim to induce tumor-selective apoptosis, it is critical to understand the specific cell death pathways triggered by drugs. This can help to better understand the mechanism of how cancer cells respond to chemical stimulations and improve the treatment of human tumors. In this study, using Connectivity MAP microarray-based gene expression data, we applied a Bayesian network modeling approach and identified apoptosis as a major drug-induced cellular pathway. We focused on 13 apoptotic genes that showed significant differential expression across all drug-perturbed samples to reconstruct the apoptosis network. In our predicted subnetwork, 9 out of 15 high-confidence interactions were validated in literature, and our inferred network captured two major cell death pathways by identifying BCL2L11 and PMAIP1 as key interacting players for the intrinsic apoptosis pathway, and TAXBP1 and TNFAIP3 for the extrinsic apoptosis pathway. Our inferred apoptosis network also suggested the role of BCL2L11 and TNFAIP3 as “gateway” genes in the drug-induced intrinsic and extrinsic apoptosis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  2. Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  PubMed  Google Scholar 

  3. Lander ES (1999) Array of hope. Nat Genet 21:3–4

    Article  CAS  PubMed  Google Scholar 

  4. Sellers WR, Fisher DE (1999) Apoptosis and cancer drug targeting. J Clin Invest 104:1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montero-Melendez T, Dalli J, Perretti M (2013) Gene expression signature-based approach identifies a pro-resolving mechanism of action for histone deacetylase inhibitors. Cell Death Differ 20:567–575

    Article  CAS  PubMed  Google Scholar 

  6. Cheng J, Xie Q, Kumar V, Hurle M, Freudenberg JM, Yang L, Agarwal P (2013) Evaluation of analytical methods for connectivity map data. Pac Symp Biocomput:5–16

    Google Scholar 

  7. Qu XA, Rajpal DK (2012) Applications of Connectivity Map in drug discovery and development. Drug Discov Today 17:1289–1298

    Article  CAS  PubMed  Google Scholar 

  8. Zimmer M, Lamb J, Ebert BL, Lynch M, Neil C, Schmidt E, Golub TR, Iliopoulos O (2010) The connectivity map links iron regulatory protein-1-mediated inhibition of hypoxia-inducible factor-2a translation to the anti-inflammatory 15-deoxy-delta12,14-prostaglandin J2. Cancer Res 70:3071–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang K, Sun J, Zhou S, Wan C, Qin S, Li C, He L, Yang L (2013) Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity. PLoS Comput Biol 9:e1003315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandmann T, Kummerfeld SK, Gentleman R, Bourgon R (2014) gCMAP: user-friendly connectivity mapping with R. Bioinformatics 30:127–128

    Article  CAS  PubMed  Google Scholar 

  11. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495

    Article  CAS  PubMed  Google Scholar 

  12. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green D (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  14. Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99:909–917

    Article  Google Scholar 

  15. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3

    Article  Google Scholar 

  16. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620

    Article  CAS  PubMed  Google Scholar 

  18. Pe’er D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl 1):S215–S224

    Article  PubMed  Google Scholar 

  19. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805

    Article  CAS  PubMed  Google Scholar 

  20. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer. Sci STKE 2005:pl4

    PubMed  Google Scholar 

  21. Ellis B, Wong WH (2008) Learning causal Bayesian network structures from experimental data. J Am Stat Assoc 103:778–789

    Article  CAS  Google Scholar 

  22. Bøttcher S (2001) Learning Bayesian networks with mixed variables. In: Proceedings of the eighth international workshop in artificial intelligence and statistics

    Google Scholar 

  23. Geiger D, Heckerman D (1994) Learning Gaussian networks. Technical Report MSRTR-94–10, Microsoft Research

    Chapter  Google Scholar 

  24. Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197

    Google Scholar 

  25. Chickering D (1996) Learning Bayesian networks is NP-complete. In: Fisher DF, Lenz H-J (eds) Learning from data: artificial intelligence and statistics, V. Springer, New York

    Google Scholar 

  26. Bøttcher S, Dethlefsen C (2003) Deal: a package for learning Bayesian networks. J Stat Softw 8(20):1–40

    Google Scholar 

  27. Bøttcher S, Dethlefsen C (2003) Learning Bayesian networks with R. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing. ISSN 1609-395X

    Google Scholar 

  28. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, London

    Book  Google Scholar 

  29. Friedman N, Goldszmidt M, Wyner A (1999) Data analysis with Bayesian networks: a bootstrap approach. In: Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pp 206–215

    Google Scholar 

  30. Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787

    Article  CAS  PubMed  Google Scholar 

  31. http://www.ncbi.nlm.nih.gov/gene/8887

    Google Scholar 

  32. Beyaert R, De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R, Fiers W, Jeang KT (1999) The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18:4182–4190

    Article  CAS  PubMed  Google Scholar 

  33. Beyaert R, Klinkenberg M, Van Huffel S, Heyninck K (2001) Functional redundancy of the zinc fingers of A20 for inhibition of NF-kappa B activation and protein-protein interactions. FEBS Lett 498:93–97

    Article  PubMed  Google Scholar 

  34. Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-kappa B signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327:1135–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. http://www.uniprot.org/uniprot/Q13794

    Google Scholar 

  36. http://thebiogrid.org/111379/summary/homo-sapiens/pmaip1.html

    Google Scholar 

  37. http://thebiogrid.org/115335/summary/homo-sapiens/bcl2l11.html

    Google Scholar 

  38. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302:1036–1038

    Article  CAS  PubMed  Google Scholar 

  39. Villunger A, Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A (2005) BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106:4131–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, J., Silva, J.M. (2018). Bayesian Network to Infer Drug-Induced Apoptosis Circuits from Connectivity Map Data. In: Raghavachari, N., Garcia-Reyero, N. (eds) Gene Expression Analysis. Methods in Molecular Biology, vol 1783. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7834-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7834-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7833-5

  • Online ISBN: 978-1-4939-7834-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics