Advertisement

Overview of Gene Expression Analysis: Transcriptomics

  • Nalini Raghavachari
  • Natàlia Garcia-Reyero
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1783)

Abstract

Currently, the study of the transcriptome is widely used to interpret the functional elements of the genome and molecular constituents of cells and tissues in an effort to unravel biological pathways associated with development and disease. The advent of technologies is now enabling the study of such comprehensive transcriptional characterization of mRNA, miRNA, lncRNA, and small RNA in a robust and successful manner. Transcriptomic strategies are gaining momentum across diverse areas of biological, plant sciences, medical, clinical, and pharmaceutical research for biomarker discovery, and disease diagnosis and prognosis.

Key words

Transcriptomics mRNA Noncoding RNA miRNA QPCR RNA-seq Epigenetics 

References

  1. 1.
    Crick FH (1970) DNA: test of structure? Science 167(3926):1694CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xu S (2017) Transcriptome profiling in systems vascular medicine. Front Pharmacol 8:563. https://doi.org/10.3389/fphar.2017.00563 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wooten DJ, Quaranta V (2017) Mathematical models of cell phenotype regulation and reprogramming: make cancer cells sensitive again! Biochim Biophys Acta 1867(2):167–175. https://doi.org/10.1016/j.bbcan.2017.04.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Raghavachari N, Liu P, Barb JJ, Yang Y, Wang R, Nguyen QT, Munson PJ (2014) Integrated analysis of miRNA and mRNA during differentiation of human CD34+ cells delineates the regulatory roles of microRNA in hematopoiesis. Exp Hematol 42(1):14–27.e11–12. https://doi.org/10.1016/j.exphem.2013.10.003 CrossRefGoogle Scholar
  6. 6.
    de Andres-Pablo A, Morillon A, Wery M (2017) LncRNAs, lost in translation or licence to regulate? Curr Genet 63(1):29–33. https://doi.org/10.1007/s00294-016-0615-1 CrossRefPubMedGoogle Scholar
  7. 7.
    Pertea M (2012) The human transcriptome: an unfinished story. Genes 3(3):344–360. https://doi.org/10.3390/genes3030344 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, Zhao G, Bu D, Jiao F, Shao Q, Chen R, Zhao Y (2013) Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Res 41(2):e35. https://doi.org/10.1093/nar/gks967 CrossRefPubMedGoogle Scholar
  9. 9.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. https://doi.org/10.1038/nrg3074 CrossRefPubMedGoogle Scholar
  10. 10.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. https://doi.org/10.1002/path.2638 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang RF, Cao WW, Johnson MG (1991) Development of a 16S rRNA-based oligomer probe specific for Listeria monocytogenes. Appl Environ Microbiol 57(12):3666–3670PubMedPubMedCentralGoogle Scholar
  12. 12.
    Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25(4):386–401. https://doi.org/10.1006/meth.2001.1261 CrossRefPubMedGoogle Scholar
  13. 13.
    Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tome P, Aggarwal A, Bajorek E, Bentolila S, Birren BB, Butler A, Castle AB, Chiannilkulchai N, Chu A, Clee C, Cowles S, Day PJ, Dibling T, Drouot N, Dunham I, Duprat S, East C, Edwards C, Fan JB, Fang N, Fizames C, Garrett C, Green L, Hadley D, Harris M, Harrison P, Brady S, Hicks A, Holloway E, Hui L, Hussain S, Louis-Dit-Sully C, Ma J, MacGilvery A, Mader C, Maratukulam A, Matise TC, McKusick KB, Morissette J, Mungall A, Muselet D, Nusbaum HC, Page DC, Peck A, Perkins S, Piercy M, Qin F, Quackenbush J, Ranby S, Reif T, Rozen S, Sanders C, She X, Silva J, Slonim DK, Soderlund C, Sun WL, Tabar P, Thangarajah T, Vega-Czarny N, Vollrath D, Voyticky S, Wilmer T, Wu X, Adams MD, Auffray C, Walter NA, Brandon R, Dehejia A, Goodfellow PN, Houlgatte R, Hudson JR Jr, Ide SE, Iorio KR, Lee WY, Seki N, Nagase T, Ishikawa K, Nomura N, Phillips C, Polymeropoulos MH, Sandusky M, Schmitt K, Berry R, Swanson K, Torres R, Venter JC, Sikela JM, Beckmann JS, Weissenbach J, Myers RM, Cox DR, James MR, Bentley D, Deloukas P, Lander ES, Hudson TJ (1996) A gene map of the human genome. Science 274(5287):540–546CrossRefPubMedGoogle Scholar
  14. 14.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226 CrossRefPubMedGoogle Scholar
  15. 15.
    Aziz MA, Yousef Z, Saleh AM, Mohammad S, Al Knawy B (2017) Towards personalized medicine of colorectal cancer. Crit Rev Oncol Hematol 118:70–78. https://doi.org/10.1016/j.critrevonc.2017.08.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Dominguez A, Munoz E, Lopez MC, Cordero M, Martinez JP, Vinas M (2017) Transcriptomics as a tool to discover new antibacterial targets. Biotechnol Lett 39(6):819–828. https://doi.org/10.1007/s10529-017-2319-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Flint SM, McKinney EF, Lyons PA, Smith KG (2015) The contribution of transcriptomics to biomarker development in systemic vasculitis and SLE. Curr Pharm Des 21(17):2225–2235CrossRefPubMedGoogle Scholar
  18. 18.
    Gobert GN, Jones MK (2008) Discovering new schistosome drug targets: the role of transcriptomics. Curr Drug Targets 9(11):922–930CrossRefPubMedGoogle Scholar
  19. 19.
    Granata S, Dalla Gassa A, Bellin G, Lupo A, Zaza G (2016) Transcriptomics: a step behind the comprehension of the polygenic influence on oxidative stress, immune deregulation, and mitochondrial dysfunction in chronic kidney disease. Biomed Res Int 2016:9290857. https://doi.org/10.1155/2016/9290857 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kan M, Shumyatcher M, Himes BE (2017) Using omics approaches to understand pulmonary diseases. Respir Res 18(1):149. https://doi.org/10.1186/s12931-017-0631-9 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lillicrap D (2002) Gene expression: overview and clinical implications. Vox Sang 83 Suppl 1:77–79CrossRefPubMedGoogle Scholar
  22. 22.
    Trapp J, McAfee A, Foster LJ (2017) Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 26(3):718–739. https://doi.org/10.1111/mec.13986 CrossRefPubMedGoogle Scholar
  23. 23.
    Gao Y, Wang F, Eisinger BE, Kelnhofer LE, Jobe EM, Zhao X (2017) Integrative single-cell transcriptomics reveals molecular networks defining neuronal maturation during postnatal neurogenesis. Cereb Cortex 27(3):2064–2077. https://doi.org/10.1093/cercor/bhw040 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Geriatrics and Clinical GerontologyNational Institute on AgingBethesdaUSA
  2. 2.Environmental LaboratoryUS Army Engineer Research and Development CenterVicksburgUSA

Personalised recommendations