Skip to main content

The Importance of Calcium Ions for Determining Mitochondrial Glycerol-3-Phosphate Dehydrogenase Activity When Measuring Uncoupling Protein 1 (UCP1) Function in Mitochondria Isolated from Brown Adipose Tissue

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1782))

Abstract

Glycerol-3-phosphate is an excellent substrate for FAD-linked mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in brown adipose tissue mitochondria and is regularly used as the primary substrate to measure oxygen consumption and reactive oxygen consumption by these mitochondria. mGPDH converts cytosolic glycerol-3-phosphate to dihydroxyacetone phosphate, feeding electrons directly from the cytosolic side of the mitochondrial inner membrane to the CoQ-pool within the inner membrane. mGPDH activity is allosterically activated by calcium, and when calcium chelators are present in the mitochondrial preparation medium and/or experimental incubation medium, calcium must be added to insure maximal mGPDH activity. It was demonstrated that in isolated brown adipose tissue mitochondria (1) mGPDH enzyme activity is maximal at free calcium ion concentrations in the 350 nM–1 μM range, (2) that ROS production also peaks in the 10–100 nM range in the presence of a UCP1 inhibitory ligand (GDP) but wanes with further increasing calcium concentration, and (3) that oxygen consumption rates peak in the 10–100 nM range with rates being maintained at higher calcium concentrations. This article provides easy-to-follow protocols to facilitate the measurement of mGPDH-dependent UCP1 activity in the presence of calcium for isolated brown adipose tissue mitochondria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, Fahien LA, Kozak LP, MacDonald MJ (2002) Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J Biol Chem 277:32892–32898

    Article  PubMed  CAS  Google Scholar 

  2. Orr AL, Quinlan CL, Perevoshchikova IV, Brand MD (2012) A refined analysis of superoxide production by mitochondrial sn-glycerol-3-phosphate dehydrogenase. J Biol Chem 287:42921–42935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mráček T, Drahota Z, Houštěk J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827:401–410

    Article  PubMed  CAS  Google Scholar 

  4. Drahota Z, Chowdhury SK, Floryk D, Mráček T, Wilhelm J, Rauchova H, Lenaz G, Houštěk J (2002) Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr 34:105–113

    Article  PubMed  CAS  Google Scholar 

  5. Vrbacký M, Drahota Z, Mráček T, Vojtíšková A, Ješina P, Stopka P, Houštěk J (2007) Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochim Biophys Acta 1767:989–997

    Article  PubMed  CAS  Google Scholar 

  6. Mráček T, Holzerová E, Drahota Z, Kovářová N, Vrbacký M, Ješina P, Houštěk J (2014) ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochim Biophys Acta 1837:98–111

    Article  PubMed  CAS  Google Scholar 

  7. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  PubMed  Google Scholar 

  8. MacDonald MJ, Brown LJ (1996) Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys 326:79–84

    Article  PubMed  CAS  Google Scholar 

  9. Wohlrab H (1977) The divalent cation requirement of the mitochondrial glycerol-3-phosphate dehydrogenase. Biochim Biophys Acta 462:102–112

    Article  PubMed  CAS  Google Scholar 

  10. Beleznai Z, Szalay L, Jancsik V (1988) Ca2+ and Mg2+ as modulators of mitochondrial L-glycerol-3-phosphate dehydrogenase. Eur J Biochem 170:631–636

    Article  PubMed  CAS  Google Scholar 

  11. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

    Article  PubMed  CAS  Google Scholar 

  12. Brown LJ, MacDonald MJ, Lehn DA, Moran SM (1994) Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA: evidence for EF-hand calcium-binding domains. J Biol Chem 269:14363–14366

    PubMed  CAS  Google Scholar 

  13. Dummler K, Muller S, Seitz HJ (1996) Regulation of adenine nucleotide translocase and glycerol-3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues. Biochem J 317:913–918

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koza RA, Kozak UC, Brown LJ, Leiter EH, MacDonald MJ, Kozak LP (1996) Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 336:97–104

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald MJ (1981) High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. J Biol Chem 256:8287–8290

    PubMed  CAS  Google Scholar 

  16. Idahl LA, Lembert N (1995) Glycerol-3-phosphate-induced ATP production in intact mitochondria from pancreatic B-cells. Biochem J 312:287–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Honzik T, Drahota Z, Bohm M, Ješina P, Mráček T, Paul J, Zeman J, Houštěk J (2006) Specific properties of heavy fraction of mitochondria from human-term placenta - glycerophosphate-dependent hydrogen peroxide production. Placenta 27:348–356

    Article  PubMed  CAS  Google Scholar 

  18. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    Article  PubMed  CAS  Google Scholar 

  19. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  20. Zhao J, Cannon B, Nedergaard J (1997) alpha1-Adrenergic stimulation potentiates the thermogenic action of beta3-adrenoreceptor-generated cAMP in brown fat cells. J Biol Chem 272:32847–32856

    Article  PubMed  CAS  Google Scholar 

  21. Koivisto A, Siemen D, Nedergaard J (2000) Norepinephrine-induced sustained inward current in brown fat cells: alpha(1)-mediated by nonselective cation channels. Am J Physiol Endocrinol Metab 279:E963–E977

    Article  PubMed  CAS  Google Scholar 

  22. Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296

    Article  PubMed  CAS  Google Scholar 

  23. Carroll AM, Porter RK, Morrice NA (2008) Identification of serine phosphorylation in mitochondrial uncoupling protein 1. Biochim Biophys Acta 1777:1060–1065

    Article  PubMed  CAS  Google Scholar 

  24. Dlasková A, Clarke KJ, Porter RK (2010) The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue. Biochim Biophys Acta 1797:1470–1476

    Article  PubMed  CAS  Google Scholar 

  25. Dawson AP, Thorne CJR (1969) Preparation and some properties of L-3- glycerophosphate dehydrogenase from pig brain mitochondria. Biochem J 111:27–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schoenmakers TJ, Visser GJ, Flik G, Theuvenet AP (1992) CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. BioTechniques 12:870–879

    PubMed  CAS  Google Scholar 

  27. Scarpace PJ, Bender BS, Borst SE (1991) Escherichia coli peritonitis activates thermogenesis in brown adipose tissue: relationship to fever. Can J Physiol Pharmacol 69:761–766

    Article  PubMed  CAS  Google Scholar 

  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clarke, K.J., Porter, R.K. (2018). The Importance of Calcium Ions for Determining Mitochondrial Glycerol-3-Phosphate Dehydrogenase Activity When Measuring Uncoupling Protein 1 (UCP1) Function in Mitochondria Isolated from Brown Adipose Tissue. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics