Skip to main content

Computational Modeling of Mitochondrial Function from a Systems Biology Perspective

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1782))

Abstract

The advent of “big data” in biology (e.g., genomics, proteomics, metabolomics), holding the promise to reveal the nature of the formidable complexity in cellular and organ makeup and function, has highlighted the compelling need for analytical and integrative computational methods to interpret and make sense of the patterns and changes in those complex networks. Computational models need to be built on sound physicochemical mechanistic principles in order to integrate, interpret, and simulate high-throughput experimental data. Energy transduction processes have been traditionally studied with thermodynamic, kinetic, or thermo-kinetic models, with the latter proving superior to understand the control and regulation of mitochondrial energy metabolism and its interactions with cytoplasmic and other cellular compartments. In this work, we survey the methods to be followed to build a computational model of mitochondrial energetics in isolation or integrated into a network of cellular processes. We describe the use of analytical tools such as elementary flux modes, linear optimization of metabolic models, and control analysis, to help refine our grasp of biologically meaningful behaviors and model reliability. The use of these tools should improve the design, building, and interpretation of steady-state behaviors of computational models while assessing validation criteria and paving the way to prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Winslow RL, Cortassa S, Greenstein JL (2005) Using models of the myocyte for functional interpretation of cardiac proteomic data. J Physiol 563(Pt 1):73–81

    Article  CAS  PubMed  Google Scholar 

  2. Aon MA (2014) Complex systems biology of networks: the riddle and the challenge. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks: energy, mass and information transfer, Springer series in biophysics, vol 16. Springer-Verlag, Berlin, Berlin, pp 19–35. https://doi.org/10.1007/978-3-642-38505-6_2

    Chapter  Google Scholar 

  3. Cortassa S, Aon MA (2012) Computational modeling of mitochondrial function. Methods Mol Biol 810:311–326. https://doi.org/10.1007/978-1-61779-382-0_19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60

    Article  CAS  PubMed  Google Scholar 

  5. Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol 154(4):421–454

    Article  CAS  PubMed  Google Scholar 

  6. Vo TD, Palsson BO (2007) Building the power house: recent advances in mitochondrial studies through proteomics and systems biology. Am J Physiol Cell Physiol 292(1):C164–C177

    Article  CAS  PubMed  Google Scholar 

  7. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. https://doi.org/10.1038/nbt.1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thiele I, Price ND, Vo TD, Palsson BO (2005) Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem 280(12):11683–11695. https://doi.org/10.1074/jbc.M409072200

    Article  PubMed  CAS  Google Scholar 

  9. Cortassa S, Caceres V, Bell LN, O'Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108(1):163–172. https://doi.org/10.1016/j.bpj.2014.11.1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An Introduction to Metabolic and Cellular Engineering, 2nd Edition edn. World Scientific Publishers, Singapore

    Google Scholar 

  11. Cortassa S, Aon MA, Marban E, Winslow RL, O'Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84(4):2734–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marban E, Winslow RL (2006) A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 91(4):1564–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magnus G, Keizer J (1997) Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Phys 273(2 Pt 1):C717–C733

    Article  CAS  Google Scholar 

  14. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  CAS  PubMed  Google Scholar 

  15. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia Coli. Nature 427(6977):839–843

    Article  CAS  PubMed  Google Scholar 

  16. Cortassa S, Aon JC, Aon MA (1995) Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 47(2):193–208

    Article  CAS  PubMed  Google Scholar 

  17. Fell DA (1996) Understanding the control of metabolism. Frontiers in Metabolism. Portland Press, London

    Google Scholar 

  18. Hill TL, Chay TR (1979) Theoretical methods for study of kinetics of models of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A 76(7):3203–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortassa S, Aon MA, Winslow RL, O'Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87(3):2060–2073. https://doi.org/10.1529/biophysj.104.041749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D (2017) Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med 9(1). https://doi.org/10.1002/wsbm.1352

    Google Scholar 

  21. Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O'Rourke B (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6(1):e1000657. https://doi.org/10.1371/journal.pcbi.1000657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35(Database issue):D511–D514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  PubMed  CAS  Google Scholar 

  24. Nelson DL, Cox MM (2013) Lehninger principles of biochemistry, 6th edn. W. H. Freeman and Company, New York

    Google Scholar 

  25. Nickerson D, Stevens C, Halstead M, Hunter P, Nielsen P (2006) Toward a curated CellML model repository. Conf Proc IEEE Eng Med Biol Soc 1:4237–4240

    Google Scholar 

  26. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B (2008) New features of the software MatCont for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14(2):147–175

    Article  Google Scholar 

  27. Schuster S, von Kamp A, Pachkov M (2007) Understanding the roadmap of metabolism by pathway analysis. Methods Mol Biol 358:199–226. https://doi.org/10.1007/978-1-59745-244-1_12

    Article  PubMed  CAS  Google Scholar 

  28. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15):1930–1931. https://doi.org/10.1093/bioinformatics/btl267

    Article  CAS  Google Scholar 

  29. Gunn RB, Curran PF (1971) Membrane potentials and ion permeability in a cation exchange membrane. Biophys J 11(7):559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  31. Crank J (1975) The mathematics of diffusion, 2d edn. Clarendon Press, Oxford, England

    Google Scholar 

  32. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  33. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135(2):175–201

    Article  CAS  PubMed  Google Scholar 

  34. Cortassa S, O'Rourke B, Winslow RL, Aon MA (2009) Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 96(6):2466–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ainscow EK, Brand MD (1999) The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis. Eur J Biochem 265(3):1043–1055

    Article  CAS  PubMed  Google Scholar 

  36. Cortassa S, Sollott SJ, Aon MA (2017) Substrate selection and its impact on mitochondrial respiration and redox. Molecular Basis for Mitochondrial Signalling Springer International Publishing:349–375. https://doi.org/10.1007/978-3-319-55539-3

  37. Rutter GA, Denton RM (1988) Regulation of NAD+−linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J 252(1):181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Price ND, Schellenberger J, Palsson BO (2004) Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J 87(4):2172–2186. https://doi.org/10.1529/biophysj.104.043000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257(6):2754–2757

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Cortassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cortassa, S., Sollott, S.J., Aon, M.A. (2018). Computational Modeling of Mitochondrial Function from a Systems Biology Perspective. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics