Skip to main content

Overview of Mitochondrial Bioenergetics

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1782))

Abstract

Bioenergetic science started in the eighteenth century with the pioneer works by Joseph Priestley and Antoine de Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in the 1860s with the description of fermentations associated with microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of the twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in the 1940s with the contributions of Embden, Meyeroff, Parnas, and Warburg, among others.

Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s.

Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lehninger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent “chemical coupling hypothesis” of energy conservation in oxidative phosphorylation was challenged and replaced by the “chemiosmotic hypothesis” originally formulated in the 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps.

After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e. g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water-splitting center, and energy collecting antennae of several photosynthetic systems.

Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials.

In spite of significant development and advances of bioenergetic knowledge, major issues remain mainly related with poor experimental designs not representative of the real native cell conditions. Therefore, a major effort has to be implemented regarding direct observations in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Priestley J (1775) An account of further discoveries in air. Philosoph Trasact 65:384–394

    Google Scholar 

  2. Priestley J (1775) Experiments and observations on different kinds of air, 2nd edn. J. Johnson, London

    Google Scholar 

  3. Lavoisier AL (1789) Traité elementaire de chimie. Cuchet, Paris

    Google Scholar 

  4. Lavoisier AL (1864) In oeuvres de Lavoisier, Tome II. memoires de chimie et de physique. Imprimerie Imperiale, Paris

    Google Scholar 

  5. Lehninger AL (1975) Biochemistry. Worth Publishers, Inc., New York

    Google Scholar 

  6. Buchner E (1897) Alkoholische gärung ohne hefezellen. Berichte der Deutschen Chemischen Gesellshaft 30:117–124

    Article  CAS  Google Scholar 

  7. Buchner E, Rapp R (1899) Alkoholische gärung ohne hefezellen. Berichte der Deutschen Chemischen Gesellshaft 32:2086–2094

    Article  CAS  Google Scholar 

  8. Mahler HR, Cordes EH (1971) Biological chemistry, 2nd edn. Harper and Row, New York, p 495

    Google Scholar 

  9. Harden A, Young JW (1905) Proc Chem Soc 21:189–195

    Google Scholar 

  10. Stryer L (1995) Biochemistry, 5th edn. W. H. Freeman and Co., New York, pp 483–484

    Google Scholar 

  11. Krebs HA (1970) The history of the tricarboxylic acid cycle. Prespect Biol Med 14:154–170

    Article  CAS  Google Scholar 

  12. Lehninger A (1965) The mitochondrion: molecular basis of structure and function. Benjamin, Menlo Park, CA

    Google Scholar 

  13. Mitchell P, Moyle J (1969) Estimation of membrane potential and pH difference across the crystal membranes of rat liver mitochondria. Eur J Biochem 7:471–478

    Article  PubMed  CAS  Google Scholar 

  14. Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  15. Bott M, Thauer RK (1989) Proton translocation coupled to oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem 179:469–472

    Article  PubMed  CAS  Google Scholar 

  16. Wikström MKF (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273

    Article  PubMed  Google Scholar 

  17. Solioz M, Carafoli E, Ludwig B (1982) The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem 257:1579–1582

    PubMed  CAS  Google Scholar 

  18. Yagi T, Matsuno-Yagi (2003) The proton-translocating NADH-quinone oxidoreductase in respiratory chain: the secret unlocked. Biochemistry 42:2266–2274

    Article  PubMed  CAS  Google Scholar 

  19. Hackenbrock CR (1981) Lateral diffusion and electron transfer in mitochondrial inner membrane. Trends Biochem Sci 6:151–154

    Article  CAS  Google Scholar 

  20. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, London

    Google Scholar 

  21. Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, 3rd edn. Worth Publishers, New York

    Google Scholar 

  22. Tsukihara T, Aoyama H, Yamashita E et al (1996) The whole structure of 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  23. Iwata S, Osteimer C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  24. Zang Z, Huang L, Shulmeister VM et al (1998) Electron transfer by domain movement in cytochrome bc1. Natura 392:677–684

    Article  CAS  Google Scholar 

  25. Yankovskaya V, Horsefield R, Törnroth S et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  PubMed  CAS  Google Scholar 

  26. Abrahams JP, Leslie AGW, Luter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Ko Y, Delannoy M, Ludtke J, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome. J Biol Chem 23:31761–31768

    Article  CAS  Google Scholar 

  28. Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429–457

    Article  PubMed  CAS  Google Scholar 

  29. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  31. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  32. Karrasch S, Bullough PA, Gosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu Z, Yan H, Wang K, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  34. Jones DP (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163:38–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor M. C. Madeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Madeira, V.M.C. (2018). Overview of Mitochondrial Bioenergetics. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics