Skip to main content

Application of Chemogenetics and Optogenetics to Dissect Brain-Immune Interactions

  • Protocol
  • First Online:
Book cover Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1781))

Abstract

For many years, the complexity and multifactorial nature of brain-immune interactions limited our ability to dissect their underlying mechanisms. An especially challenging question was how the brain controls immunity, since the repertoire of techniques to control the brain’s activity was extremely limited. New tools, such as optogenetics and chemogenetics (e.g., DREADDs), developed over the last decade, opened new frontiers in neuroscience with major implications for neuroimmunology. These tools enable mapping the causal effects of activating/attenuating defined neurons in the brain, on the immune system. Here, we present a detailed experimental protocol for the analysis of brain-immune interactions, based on chemogenetic or optogenetic manipulation of defined neuronal populations in the brain, and the subsequent analysis of immune cells. Such detailed and systematic dissection of brain-immune interactions has the potential to revolutionize our understanding of how mental and neurological states affect health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Shaanan TL, Azulay-Debby H, Dubovik T et al (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22:940–944. https://doi.org/10.1038/nm.4133

    Article  CAS  PubMed  Google Scholar 

  2. Abe C, Inoue T, Inglis MA et al (2017) C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 20:700–707. https://doi.org/10.1038/nn.4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20:156–166. https://doi.org/10.1038/nn.4477

    Article  CAS  PubMed  Google Scholar 

  4. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  5. Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694. https://doi.org/10.1016/j.neuron.2016.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417. https://doi.org/10.1146/annurev-pharmtox-010814-124803

    Article  CAS  PubMed  Google Scholar 

  7. Cardin JA, Carlén M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5:247–254. https://doi.org/10.1038/nprot.2009.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furman M, Zhan Q, McCafferty C et al (2015) Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: effects on cortical physiology. Epilepsia 56:e198–e202. https://doi.org/10.1111/epi.13220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng H, Madisen L (2012) Mouse transgenic approaches in optogenetics. Prog Brain Res 196:193–213. https://doi.org/10.1016/B978-0-444-59426-6.00010-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456. https://doi.org/10.1038/nprot.2009.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sidor MM, Davidson TJ, Tye KM et al (2015) In vivo optogenetic stimulation of the rodent central nervous system. J Vis Exp 95:51483. https://doi.org/10.3791/51483

    Article  CAS  Google Scholar 

  12. Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573. https://doi.org/10.1038/nprot.2009.239

    Article  CAS  PubMed  Google Scholar 

  13. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225. https://doi.org/10.1038/nn.4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392. https://doi.org/10.1038/nn.2495

    Article  CAS  PubMed  Google Scholar 

  15. Prigge M, Schneider F, Tsunoda SP et al (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812. https://doi.org/10.1074/jbc.M112.391185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407. https://doi.org/10.1146/annurev-neuro-071013-014048

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson SM, Neumaier JF (2012) Grateful DREADDs: engineered receptors reveal how neural circuits regulate behavior. Neuropsychopharmacology 37:296–297. https://doi.org/10.1038/npp.2011.179

    Article  PubMed  Google Scholar 

  18. Gomez JL, Bonaventura J, Lesniak W et al (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–507. https://doi.org/10.1126/science.aan2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raper J, Morrison RD, Daniels JS et al (2017) Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem Nerosci 8:1570–1576. https://doi.org/10.1021/acschemneuro.7b00079

    Article  CAS  Google Scholar 

  20. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4. https://doi.org/10.1016/j.molcel.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto M, Matsuzaki F, Oshikawa K et al (2017) A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods 14:251–258. https://doi.org/10.1038/nmeth.4116

    Article  CAS  PubMed  Google Scholar 

  22. Nyman TA, Lorey MB, Cypryk W, Matikainen S (2017) Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Rev Proteomics 14:395–407. https://doi.org/10.1080/14789450.2017.1319768

    Article  CAS  PubMed  Google Scholar 

  23. Rieckmann JC, Geiger R, Hornburg D et al (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 18:583–593. https://doi.org/10.1038/ni.3693

    Article  CAS  PubMed  Google Scholar 

  24. Cheung RK, Utz PJ (2011) Screening: CyTOF—the next generation of cell detection. Nat Rev Rheumatol 7:502–503

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brodie TM, Tosevski V (2017) High-dimensional single-cell analysis with mass cytometry. Curr Protoc Immunol 118:5.11.1–5.11.25. https://doi.org/10.1002/cpim.31

    Article  Google Scholar 

  27. Gunaydin LA, Grosenick L, Finkelstein JC et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551. https://doi.org/10.1016/j.cell.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  CAS  PubMed  Google Scholar 

  29. LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Schwarzbaum for editing the paper, and T.L. Ben-Shaanan, M. Schiller, and H. Azulay-Debby for their help and advice. Our research is supported by the Israeli Ministry of Science, Technology & Space (MOST; 3-12070), Prince Center for Neurodegenerative Diseases , Israeli Society for Science (1862/15), the Colleck Research Fund and the ADELIS Foundation. A.R. is a Howard Hughes Medical Institute-Wellcome Trust researcher.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korin, B., Rolls, A. (2018). Application of Chemogenetics and Optogenetics to Dissect Brain-Immune Interactions. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 1781. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7828-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7828-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7827-4

  • Online ISBN: 978-1-4939-7828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics