Skip to main content

Motor Assessment in Huntington’s Disease Mice

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Motor deficits are a characteristic consequence of striatal damage, whether induced by experimental lesions, or in genetic models of Huntington’s disease involving polyglutamine expansion in the huntingtin protein. With the growing power of genetic models and genetic tools for analysis, mice are increasingly the animal model of choice, and objective quantitative measures of motor performance are in demand for experimental analysis of disease pathophysiology, progression, and treatment. We present methodological protocols for six of the most common tests of motor function—ranging from spontaneous activity, locomotor coordination, balance, and skilled limb use—that are simple, effective, efficient, and widely used for motor assessment in Huntington’s disease research in experimental mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magendie F (1823) Note sur les fonctions des corps striés et des tuberclules quadrijumeaux. J Physiol Exp Pathol 3:376–381

    Google Scholar 

  2. Laursen AM (1963) Corpus striatum. Acta Physiol Scand Suppl 211:1–106

    Google Scholar 

  3. Huntington G (1872) On chorea. Med Surg Rep 26:317–321

    Google Scholar 

  4. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  5. Crawley JN (2000) What’s wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. Wiley, New York

    Google Scholar 

  6. Carter RJ, Lione LA, Humby T et al (1999) Characterisation of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    Article  CAS  PubMed  Google Scholar 

  7. Dunnett SB, Bensadoun JC, Pask T et al (2003) Assessment of motor behaviour in transgenic mice. In: Crawley JN (ed) Mouse behaviour phenotyping. Society for Neuroscience, Washington, pp 1–12

    Google Scholar 

  8. Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529

    Article  CAS  PubMed  Google Scholar 

  9. Brooks SP, Trueman RC, Dunnett SB (2012) Assessment of motor coordination and balance in mice. Curr Protoc Mouse Biol 2:37–53

    PubMed  Google Scholar 

  10. Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neuroligical deficit in rats and mice. J Am Pharm Assoc 46:208–209

    Article  CAS  Google Scholar 

  11. Wallace JE, Krauter EE, Campbell BA (1980) Motor and reflexive behavior in the aging rat. J Gerontol 35:364–270

    Article  CAS  PubMed  Google Scholar 

  12. Schallert T, Woodlee MT, Fleming SM (2002) Disentangling multiple types of recovery from brain injury. In: Krieglstein J, Klumpp S (eds) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers, Stuttgart, pp 201–216

    Google Scholar 

  13. Aguiar P, Mendonca L, Galhardo V (2007) OpenControl: a free opensource software for video tracking and automated control of behavioral mazes. J Neurosci Methods 166:66–72

    Article  PubMed  Google Scholar 

  14. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  CAS  PubMed  Google Scholar 

  15. Klein A, Sacrey LA, Whishaw IQ et al (2012) The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 36:1030–1042

    Article  PubMed  Google Scholar 

  16. Whishaw IQ, O’connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843

    Article  PubMed  Google Scholar 

  17. Montoya CP, Campbell-Hope LJ, Pemberton KD et al (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228

    Article  CAS  PubMed  Google Scholar 

  18. Baird AL, Meldrum A, Dunnett SB (2001) The staircase test of skilled reaching in mice. Brain Res Bull 54:243–250

    Article  CAS  PubMed  Google Scholar 

  19. Dunnett SB, Carter RJ, Watts C et al (1998) Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40

    Article  CAS  PubMed  Google Scholar 

  20. Kloth V, Klein A, Loettrich D et al (2006) Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats. Brain Res Bull 70:68–80

    Article  PubMed  Google Scholar 

  21. Trueman RC, Brooks SP, Jones L et al (2008) Time course of choice reaction time deficits in the HdhQ92/Q92 knock-in mouse model of Huntington’s disease in the operant Serial Implicit Learning Task (SILT). Behav Brain Res 189:317–324

    Article  PubMed  Google Scholar 

  22. Fernagut PO, Diguet E, Stefanova N et al (2002) Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience 114:1005–1017

    Article  CAS  PubMed  Google Scholar 

  23. Brooks SP, Jones L, Dunnett SB (2012) Behavioural, anatomical and genetic characterisation of mouse and rat models of Huntington’s disease. Brain Res Bull 88:81–285

    Article  PubMed  Google Scholar 

  24. Smith GA, Heuer A, Klein A et al (2012) Amphetamine-induced dyskinesia in transplanted hemiparkinsonian mice. J Parkinsons Dis 2:107–113

    PubMed  CAS  Google Scholar 

  25. Park Y-G, Choi JH, Lee C et al (2015) Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain 8:3. https://doi.org/10.1186/s13041-13015-10093-13042

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kudo T, Schroeder A, Loh DH et al (2011) Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol 228:80–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ugo Basile and Campden Instruments for granting permission to reproduce Figs. 2 and 5, respectively. SBD declares a financial interest in receiving royalty payments from Campden Instruments on commercial sales of the staircase test apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Dunnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunnett, S.B., Brooks, S.P. (2018). Motor Assessment in Huntington’s Disease Mice. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics