Skip to main content

Assessing Autophagic Activity and Aggregate Formation of Mutant Huntingtin in Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

The accumulation of mutant aggregate-prone proteins is a hallmark of the majority of neurodegenerative disorders, including Alzheimer’s, Parkinson’s, and Huntington’s diseases. Autophagy, a cytosolic bulk degradation system, is the major clearance pathway for several aggregate-prone proteins, such as mutant huntingtin. The autophagosome-associated protein LC3-II is a specific marker of autophagic flux within cells, whereas aggregate formation of mutant huntingtin represents a good readout for studying autophagy modulation. Here we describe the method of assessing autophagic flux using LC3-II western blotting and substrate clearance by expressing the N-terminal fragment of huntingtin (htt exon 1) containing an expanded polyglutamine tract in mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Imarisio S, Carmichael J, Korolchuk V et al (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209

    Article  CAS  PubMed  Google Scholar 

  2. Rubinsztein DC (2002) Lessons from animal models of Huntington’s disease. Trends Genet 18(4):202–209

    Article  CAS  PubMed  Google Scholar 

  3. Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scherzinger E, Lurz R, Turmaine M, Mangiarini L et al (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558

    Article  CAS  PubMed  Google Scholar 

  5. Landles C, Sathasivam K, Weiss A et al (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 285:8808–8823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652

    Article  CAS  PubMed  Google Scholar 

  8. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 105:49–59

    Article  CAS  PubMed  Google Scholar 

  9. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  10. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  11. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sarkar S, Ravikumar B, Floto RA et al (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56

    Article  CAS  PubMed  Google Scholar 

  13. Webb JL, Ravikumar B, Atkins J et al (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  CAS  PubMed  Google Scholar 

  14. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kabeya Y, Mizushima N, Yamamoto A et al (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  CAS  PubMed  Google Scholar 

  16. Klionsky DJ, Elazar Z, Seglen PO et al (2008) Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4:849–850

    Article  CAS  PubMed  Google Scholar 

  17. Narain Y, Wyttenbach A, Rankin J et al (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li XJ, Li H, Li S (2010) Clearance of mutant huntingtin. Autophagy 6(5):663–664. https://doi.org/10.1093/hmg/ddq127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ortega Z, Lucas JJ (2014) Ubiquitin-proteasome system involvement in Huntington’s disease. Front Mol Neurosci 7:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bento CF, Ashkenazi A, Jimenez-Sanchez M et al (2016) The Parkinson’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun 7:11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaizuka T, Morishita H, Hama Y et al (2016) An autophagic flux probe that releases an internal control. Mol Cell 64:835–849

    Article  CAS  PubMed  Google Scholar 

  23. Korolchuk VI, Mansilla A, Menzies FM et al (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Tau consortium (D.C.R.), Wellcome Trust (Principal Research Fellowship to 095317/Z/11/Z), a Wellcome Trust Strategic Grant to Cambridge Institute for Medical Research (100140/Z/12/Z), and NIHR Biomedical Research Unit in Dementia at Addenbrooke’s Hospital, for funding. Ye Zhu is supported by CSC Cambridge Scholarship from Cambridge Trust and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Rubinsztein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stamatakou, E., Zhu, Y., Rubinsztein, D.C. (2018). Assessing Autophagic Activity and Aggregate Formation of Mutant Huntingtin in Mammalian Cells. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics