Skip to main content

Assessing Mitochondrial Function in In Vitro and Ex Vivo Models of Huntington’s Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Mitochondrial dysfunction has gained a preponderant role in the pathogenesis of Huntington’s disease (HD). Mutant huntingtin (mHTT) directly interacts with mitochondria in a deleterious manner. As the central hub of the cell, not only mitochondrial bioenergetics is affected but there is also diminished mitochondrial membrane potential (Δψ m) and altered production of reactive oxygen species (ROS). Restoration of mitochondrial function has proven to be a major player in the search and establishment of therapeutics for HD patients. As such, performing an overall study of mitochondrial function is crucial. In this chapter, we describe some methodologies used to study mitochondrial function by determining the oxygen consumption, changes in Δψ m, mitochondrial calcium handling, and levels of mitochondrial ROS. Here we focus on biological samples derived from HD versus control cells and/or animal models, namely functional isolated brain mitochondria, an ex vivo animal model, and cultured cells, including cell lines and primary neural cultures, as in vitro models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saft C, Zange J, Andrich J et al (2005) Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov Disord 20:674–679

    Article  PubMed  Google Scholar 

  2. Panov AV, Gutekunst C-A, Leavitt BR et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–737

    Article  CAS  PubMed  Google Scholar 

  3. Cui L, Jeong H, Borovecki F et al (2006) Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  4. Choo YS, Johnson GVW, MacDonald M et al (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420

    Article  CAS  PubMed  Google Scholar 

  5. Song W, Chen J, Petrilli A et al (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Napoli E, Wong S, Hung C et al (2013) Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. Hum Mol Genet 22:989–1004

    Article  CAS  PubMed  Google Scholar 

  7. Yano H, Baranov SV, Baranova OV et al (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17:822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goebel HH, Heipertz R, Scholz W et al (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28:23

    Article  CAS  PubMed  Google Scholar 

  9. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Leverin A-L, Han W et al (2011) Isolation of brain mitochondria from neonatal mice. J Neurochem 119:1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogers GW, Brand MD, Petrosyan S et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6:e21746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  CAS  PubMed  Google Scholar 

  13. Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27:11–21

    Article  CAS  PubMed  Google Scholar 

  14. Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  CAS  PubMed  Google Scholar 

  16. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pellman JJ, Hamilton J, Brustovetsky T, Brustovetsky N (2015) Ca2+ handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington’s disease. J Neurochem 134:652–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira IL, Ferreiro E, Schmidt J et al (2015) Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 36:680–692

    Article  CAS  PubMed  Google Scholar 

  20. Brustovetsky N (2016) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol 53:2944–2953. https://doi.org/10.1007/s12035-015-9188-0

    Article  PubMed  CAS  Google Scholar 

  21. Ayala-Peña S (2013) Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic Biol Med 62:102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  PubMed  Google Scholar 

  23. Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8:1249–1259. https://doi.org/10.1038/nprot.2013.064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Polster BM, Nicholls DG, Ge SX, Roelofs BA (2014) Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol 547:225–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sieprath T, Corne TDJ, Willems PHGM et al (2016) Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction. Adv Anat Embryol Cell Biol 219:149–177

    Article  PubMed  Google Scholar 

  26. Zhang X, Gao F (2015) Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 49:374–382

    Article  CAS  PubMed  Google Scholar 

  27. Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herbert AD, Carr AM, Hoffmann E (2014) FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS One 9:e114749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreira IL, Nascimento MV, Ribeiro M et al (2010) Mitochondrial-dependent apoptosis in Huntington’s disease human cybrids. Exp Neurol 222:243–255

    Article  CAS  PubMed  Google Scholar 

  30. Towne V, Will M, Oswald B, Zhao Q (2004) Complexities in horseradish peroxidase-catalyzed oxidation of dihydroxyphenoxazine derivatives: appropriate ranges for pH values and hydrogen peroxide concentrations in quantitative analysis. Anal Biochem 334:290–296

    Article  CAS  PubMed  Google Scholar 

  31. Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex red to resorufin: implications of exposing the Amplex red assay to light. Free Radic Biol Med 53:1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roelofs BA, Ge SX, Studlack PE, Polster BM (2015) Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic Biol Med 86:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Mantero Belard Neuroscience Prize 2013 (first edition), funded by Santa Casa da Misericórdia de Lisboa (SCML); FLAD Life Science 2020 project, FEDER through “Programa Operacional Factores de Competitividade–COMPETE” and Fundação para a Ciência e a Tecnologia—FCT (UID/NEU/04539/2013; PEst-C/SAU/LA0001/2013-2014); I.L.F. and S.I.M. were supported by the FCT postdoctoral fellowships SFRH/BPD/108493/2015 and SFRH/BPD/99219/2013, respectively; and L.N. was supported by PhD fellowship SFRH/BD/86655/2012.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, I.L., Carmo, C., Naia, L., I. Mota, S., Cristina Rego, A. (2018). Assessing Mitochondrial Function in In Vitro and Ex Vivo Models of Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics