Skip to main content

In Vivo Evaluation of Neuronal Transport in Murine Models of Neurodegeneration Using Manganese-Enhanced MRI

  • Protocol
  • First Online:
Book cover Amyloid Proteins

Abstract

Manganese-enhanced MRI (MRI) is a technique that allows for a noninvasive in vivo estimation of neuronal transport. It relies on the physicochemical properties of manganese, which is both a calcium analogue being transported along neurons by active transport, and a paramagnetic compound that can be detected on conventional T1-weighted images. Here, we report a multi-session MEMRI protocol that helps establish time-dependent curves relating to neuronal transport along the olfactory tract over several days. The characterization of these curves via unbiased fitting enables us to infer objectively a set of three parameters (the rate of manganese transport from the maximum slope, the peak intensity, and the time to peak intensity). These parameters, measured previously in wild type mice during normal aging, have served as a baseline to demonstrate their significant sensitivity to pathogenic processes associated with Tau pathology. Importantly, the evaluation of these three parameters and their use as indicators can be extended to monitor any normal and pathogenic processes where neuronal transport is altered. This approach can be applied to characterize and quantify the effect of any neurological disease conditions on neuronal transport in animal models, together with the efficacy of potential therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maday S, Twelvetrees Alison E, Moughamian Armen J, Holzbaur Erika LF (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84(2):292–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DL S, ST B (1999) Slow axonal transport. In: GJ S, BW A, RW A, SK F, MD U (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  3. Chevalier-Larsen E, Holzbaur ELF (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1762(11):1094–1108

    Article  CAS  Google Scholar 

  4. Duncan JE, Goldstein LSB (2006) The genetics of axonal transport and axonal transport disorders. PLoS Genet 2(9):e124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu X-A, Rizzo V, Puthanveettil SV (2012) Pathologies of axonal transport in neurodegenerative diseases. Transl Neurosci 3(4):355–372

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gibbs KL, Greensmith L, Schiavo G (2015) Regulation of axonal transport by protein kinases. Trends Biochem Sci 40(10):597–610

    Article  CAS  PubMed  Google Scholar 

  7. De Vos KJ, Hafezparast M (2017) Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis 105(Supplement C):283–299

    Article  PubMed  PubMed Central  Google Scholar 

  8. Millecamps S, Julien J-P (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176

    Article  CAS  PubMed  Google Scholar 

  9. Bearer EL, Zhang X, Jacobs RE (2007) Live imaging of neuronal connections by magnetic resonance: robust transport in the hippocampal-septal memory circuit in a mouse model of down syndrome. NeuroImage 37(1):230–242

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gibbs KL, Kalmar B, Sleigh JN, Greensmith L, Schiavo G (2016) In vivo imaging of axonal transport in murine motor and sensory neurons. J Neurosci Methods 257:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown A (2003) Live-cell imaging of slow axonal transport in cultured neurons. Methods Cell Biol 71:305–323

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ittner LM, Fath T, Ke YD, Bi M, van Eersel J, Li KM, Gunning P, Götz J (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci U S A 105(41):15997–16002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D, Joyce S, Trojanowski JQ, Lee VMY (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24(19):4657

    Article  CAS  PubMed  Google Scholar 

  14. Narita K, Kawasaki F, Kita H (1990) Mn and mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 510(2):289–295

    Article  CAS  PubMed  Google Scholar 

  15. Drapeau P, Nachshen DA (1984) Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 348:493–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu H, Xi Z-X, Gitajn L, Rea W, Yang Y, Stein EA (2007) Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proc Natl Acad Sci U S A 104(7):2489–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sloot WN, Gramsbergen J-BP (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 657(1):124–132

    Article  CAS  PubMed  Google Scholar 

  18. Takeda A, Kodama Y, Ishiwatari S, Okada S (1998) Manganese transport in the neural circuit of rat CNS. Brain Res Bull 45(2):149–152

    Article  CAS  PubMed  Google Scholar 

  19. Smith KDB, Kallhoff V, Zheng H, Pautler RG (2007) In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. NeuroImage 35(4):1401–1408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34(5):685–700

    Article  CAS  PubMed  Google Scholar 

  21. Tjälve H, Mejàre C, Borg-Neczak K (1995) Uptake and transport of manganese in primary and secondary olfactory neurones in pike. Pharmacol Toxicol 77(1):23–31

    Article  PubMed  Google Scholar 

  22. Tjälve H, Henriksson J, Tallkvist J, Larsson BS, Lindquist NG (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 79(6):347–356

    Article  PubMed  Google Scholar 

  23. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191

    Article  CAS  Google Scholar 

  24. Lauterbur PC, Dias MHM, Rudin AM (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In: Electrons to tissues. Academic Press, pp 752–759

    Google Scholar 

  25. Kang Y, Gore J (1984) Studies of tissue NMR relaxation enhancement by manganese: dose and time dependences. Investig Radiol 19(5):399–407

    Article  CAS  Google Scholar 

  26. London RE, Toney G, Gabel SA, Funk A (1989) Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Res Bull 23(3):229–235

    Article  CAS  PubMed  Google Scholar 

  27. Lin Y-J, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38(3):378–388

    Article  CAS  PubMed  Google Scholar 

  28. Pautler RG, Silva AC, Koretsky AP (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 40(5):740–748

    Article  CAS  PubMed  Google Scholar 

  29. Smith KDB, Peethumnongsin E, Lin H, Zheng H, Pautler RG (2010) Increased human wildtype tau attenuates axonal transport deficits caused by loss of APP in mouse models. Magnetic resonance insights 4:11–18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smith KDB, Paylor R, Pautler RG (2011) R-Flurbiprofen improves axonal transport in the Tg2576 mouse model of Alzheimer’s disease as determined by MEMRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 65(5):1423–1429

    Article  CAS  Google Scholar 

  31. Cross DJ, Flexman JA, Anzai Y, Morrow TJ, Maravilla KR, Minoshima S (2006) In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. NeuroImage 32(3):1265–1272

    Article  PubMed  Google Scholar 

  32. Cross DJ, Flexman JA, Anzai Y, Maravilla KR, Minoshima S (2008) Age-related decrease in axonal transport measured by MR imaging in vivo. NeuroImage 39(3):915–926

    Article  PubMed  Google Scholar 

  33. Bertrand A, Hoang DM, Khan U, Wadghiri YZ (2011) From axonal transport to mitochondrial trafficking: what can we learn from manganese-enhanced MRI studies in mouse models of Alzheimer's disease? Current Medical Imaging Reviews 7(2):16–27

    Article  CAS  Google Scholar 

  34. Kim J, Choi I-Y, Michaelis ML, Lee P (2011) Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI. NeuroImage 56(3):1286–1292

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gallagher JJ, Zhang X, Ziomek GJ, Jacobs RE, Bearer EL (2012) Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. NeuroImage 60(3):1856–1866

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bertrand A, Khan U, Hoang DM, Novikov DS, Krishnamurthy P, Rajamohamed Sait HB, Little BW, Sigurdsson EM, Wadghiri YZ (2013) Non-invasive, in vivo monitoring of neuronal transport impairment in a mouse model of tauopathy using MEMRI. NeuroImage 64(Supplement C):693–702

    Article  PubMed  Google Scholar 

  37. Bertrand A, Khan U, Hoang DM, Novikov D, Hill LK, Little BW, Sait HR, Shamsie M, Wadghiri YZ, Sigurdsson EM (2011) Aging diminishes neuronal transport in wild-type mice, but not in an accelerated mouse model of Aβ amyloidosis. Alzheimers Dement 7(4):S306

    Article  Google Scholar 

  38. Little BW, Khan U, Bertrand A, Rajamohamedsait H, Hill LK, Hoang DM, Wadghiri YZ, Sigurdsson EM (2012) Tau immunotherapy improves axonal transport as detected in vivo by manganese-enhanced magnetic resonance imaging. Alzheimers Dement 8(4):P166

    Article  Google Scholar 

  39. Baron MF, Rajamohamed Sait HB, RajaMohamed Sait WJ, Hoang DM, Sigurdsson EM, Wadghiri YZ (2016) Antibody therapy against tau pathology improves neuronal transport as assessed in vivo by tract-tracing manganese-enhanced MRI. Proceedings Sci. Meeting, Int’l Society for Magnetic Resonance in Medicine (Singapore) 24:6340

    Google Scholar 

  40. Wang F-H, Appelkvist P, Klason T, Gissberg O, Bogstedt A, Eliason K, Martinsson S, Briem S, Andersson A, Visser SAG, Ivarsson M, Lindberg M, Agerman K, Sandin J (2012) Decreased axonal transport rates in the Tg2576 APP transgenic mouse: improvement with the gamma-secretase inhibitor MRK-560 as detected by manganese-enhanced MRI. Eur J Neurosci 36(9):3165–3172

    Article  PubMed  Google Scholar 

  41. Daoust A, Bohic S, Saoudi Y, Debacker C, Gory-Fauré S, Andrieux A, Barbier EL, Deloulme J-C (2014) Neuronal transport defects of the MAP 6 KO mouse – a model of schizophrenia – and alleviation by Epothilone D treatment, as observed using MEMRI. NeuroImage 96(Supplement C):133–142

    Article  CAS  PubMed  Google Scholar 

  42. Majid T, Ali YO, Venkitaramani DV, Jang M-K, Lu H-C, Pautler RG (2014) In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. NeuroImage: Clinical 4(Supplement C):711–717

    Article  Google Scholar 

  43. Jouroukhin Y, Ostritsky R, Assaf Y, Pelled G, Giladi E, Gozes I (2013) NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 56:79–94

    Article  CAS  PubMed  Google Scholar 

  44. Neelavalli J, Haacke EM (2007) A simplified formula for T1 contrast optimization for short-TR steady-state incoherent (spoiled) gradient echo sequences. Magn Reson Imaging 25(10):1397–1401

    Article  PubMed  Google Scholar 

  45. Wadghiri YZ, Hoang DM, Wisniewski T, Sigurdsson EM (2012) In vivo brain MR imaging of amyloid plaques in transgenic mice. In: Amyloid Proteins, Methods in molecular biology series, vol 849, 2nd edn, pp 435–451

    Chapter  Google Scholar 

  46. Buxton RB, Edelman RR, Rosen BR, Wismer GL, Brady TJ (1987) Contrast in rapid MR imaging: T1- and T2-weighted imaging. J Comput Assist Tomogr 11(1):7–16

    Article  CAS  PubMed  Google Scholar 

  47. Ernst RR, Anderson WA (1966) Application of fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: AG032611 and AG020197, and a Zenith grant from the Alzheimer Association to EMS; Alzheimer Association IIRG-08-91618 and American Health Assistance Foundation Alzheimer Disease Research Grant A2008-155 to YZW. This work was also performed at the Preclinical Imaging Laboratory, a shared resource partially supported by NIH/SIG 1S10OD018337, the Laura and Isaac Perlmutter Cancer Center Support Grant NIH/NCI 5P30CA016087 and NIBIB Biomedical Technology Resource Center Grant NIH P41 EB017183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Z. Wadghiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertrand, A. et al. (2018). In Vivo Evaluation of Neuronal Transport in Murine Models of Neurodegeneration Using Manganese-Enhanced MRI. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics