Skip to main content

Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1779))

Abstract

Bacteria are the simplest cellular model in which amyloidosis has been addressed. It is well documented that bacterial consortia (biofilms) assemble their extracellular matrix on an amyloid scaffold, yet very few intracellular amyloids are known in bacteria. Here, we describe the methods we have resorted to characterize in Escherichia coli cells the amyloidogenesis, propagation, and dynamics of the RepA-WH1 prionoid. This prion-like protein, a manifold domain from the plasmid replication protein RepA, itself capable of assembling a functional amyloid, causes when expressed in E. coli a synthetic amyloid proteinopathy, the first model for an amyloid disease with a purely bacterial origin. These protocols are useful to study other intracellular amyloids in bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Giraldo R, Fernández-Tresguerres ME (2004) Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 52:69–83

    Article  PubMed  CAS  Google Scholar 

  2. Giraldo R (2007) Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proc Natl Acad Sci U S A 104:17388–17393

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gasset-Rosa F, Maté MJ, Dávila-Fajardo C et al (2008) Binding of sulphonated indigo derivatives to RepA-WH1 inhibits DNA-induced protein amyloidogenesis. Nucleic Acids Res 36:2249–2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Torreira E, Moreno-del Álamo M, Fuentes-Perez ME et al (2015) Amyloidogenesis of the bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation. Structure 23:183–189

    Article  PubMed  CAS  Google Scholar 

  5. Giraldo R, Moreno-Díaz de la Espina S, Fernández-Tresguerres ME et al (2011) RepA prionoid: a synthetic amyloid proteinopathy in a minimalist host. Prion 5:60–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Giraldo R, Fernández C, Moreno-del Álamo M et al (2016) RepA-WH1 prionoid: clues from bacteria on factors governing phase transitions in amyloidogenesis. Prion 10:41–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Gasset-Rosa F et al (2010) A DNA-promoted amyloid proteinopathy in Escherichia coli. Mol Microbiol 77:1456–1469

    Article  PubMed  CAS  Google Scholar 

  8. Gasset-Rosa F, Coquel AS, Moreno-del Álamo M et al (2014) Direct assessment in bacteria of prionoid propagation and phenotype selection by Hsp70 chaperone. Mol Microbiol 91:1070–1087

    Article  PubMed  CAS  Google Scholar 

  9. Molina-García L, Moreno-del Álamo M, Botias P et al (2017) Outlining core pathways of amyloid toxicity in bacteria with the RepA-WH1 prionoid. Front Microbiol 8:539

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moreno-del Álamo M, Moreno-Díaz de la Espina S, Fernández-Tresguerres ME et al (2015) Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 5:14669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Molina-García L, Giraldo R (2014) Aggregation interplay between variants of the RepA-WH1 prionoid in Escherichia coli. J Bacteriol 196:2536–2542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Molina-García L, Gasset-Rosa F, Moreno-del Álamo M et al (2016) Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 6:25425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pallarès I, Iglesias V, Ventura S (2016) The Rho termination factor of Clostridium botulinum contains a prion-like domain with a highly amyloidogenic core. Front Microbiol 6:1516

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yuan AH, Hochschild A (2017) A bacterial global regulator forms a prion. Science 355:198–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rose RE (1988) The nucleotide sequence of pACYC184. Nucleic Acids Res 16:355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Silva-Rocha R, Martínez-García E, Calles B et al (2013) The standard European vector architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675

    Article  PubMed  CAS  Google Scholar 

  17. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  19. Pósfai G, Plunkett G, Fehér T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  PubMed  CAS  Google Scholar 

  20. Blattner FR, Plunkett G III, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  21. Fernández-Tresguerres ME, Martín M, García de Viedma D et al (1995) Host growth temperature and a conservative amino acid substitution in the replication protein of pPS10 influence plasmid host range. J Bacteriol 177:4377–4384

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fernández C, Núñez-Ramírez R, Jiménez M et al (2016) RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Sci Rep 6:23144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Durante-Rodríguez G, de Lorenzo V, Martínez-García E (2014) The standard European vector architecture (SEVA) plasmid toolkit. Methods Mol Biol 1149:469–478

    Article  PubMed  CAS  Google Scholar 

  24. Lindner AB, Madden R, Demarez A et al (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105:3076–3081

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robert L, Paul G, Chen Y et al (2010) Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol Syst Biol 6:357

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dhar N, Manina G (2015) Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy. Methods Mol Biol 1285:241–256

    Article  PubMed  CAS  Google Scholar 

  27. Siddiqui S, Tufenkji N, Moraes C (2016) Microfluidics in microbiology: putting a magnifying glass on microbes. Integr Biol 8:914–917

    Article  Google Scholar 

  28. Stoscheck CM (1990) Quantitation of protein. In: Deutscher MP (ed) Guide to protein purification, Methods enzymology, vol 182. Academic Press, San Diego, pp 50–69

    Chapter  Google Scholar 

  29. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  30. Kayed R, Head E, Sarsoza F et al (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Arranz R, Mercado G, Martín-Benito J et al (2012) Structural characterization of microcin E492 amyloid formation: identification of the precursors. J Struct Biol 178:54–60

    Article  PubMed  CAS  Google Scholar 

  32. Gibbins JM (2004) Techniques for analysis of proteins by SDS-polyacrylamide gel electrophoresis and western blotting. Methods Mol Biol 273:139–151

    PubMed  CAS  Google Scholar 

  33. Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48

    Article  PubMed  CAS  Google Scholar 

  34. Molina-García L, Gasset-Rosa F (2014) Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE). Bio-protocol 4:e1297

    Google Scholar 

  35. Gasset-Rosa F, Giraldo R (2015) Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI+]. Front Microbiol 6:311

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coquel AS, Jacob JP, Primet M et al (2013) Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol 9:e1003038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maška M, Ulman V, Svoboda D et al (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics 30:1609–1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Collins TJ (2007) ImageJ for microscopy. BioTechniques 43:25–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Contributions of other past and present members of our laboratory to the development of the techniques relevant to this chapter are deeply acknowledged. We thank Ariel Lindner and his group (CRI, Descartes University/INSERM, Paris) for training F.G.R. and L.M.G. on microfluidics. This research has been supported by a grant from Spanish AEI/EU-FEDER (BIO2015-68730-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Giraldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molina-García, L., Gasset-Rosa, F., Álamo, M.Md., de la Espina, S.MD., Giraldo, R. (2018). Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics