Skip to main content

Kinetic Analysis of Amyloid Formation

  • Protocol
  • First Online:
Book cover Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1779))

Abstract

The formation of amyloid fibrils is a central phenomenon in the progressive pathology of many neurodegenerative diseases, as well as in the fabrication of functional materials. Several different molecular processes acting in concert are responsible for the formation of amyloid fibrils from monomeric protein in solution. Here, we describe a method to determine which microscopic processes drive the overall formation of fibrils by using chemical kinetics in combination with systematic experimental datasets analysed in a global manner. We outline general concepts for obtaining suitable kinetic data and detail the key stages of data analysis, from quality control to the verification of a specific mechanism of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knowles TPJ, Vendruscolo M, Dobson CM (2015) The physical basis of protein misfolding disorders. Phys Today 68:36

    Article  CAS  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  3. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  4. Aguzzi A, O'Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    Article  CAS  PubMed  Google Scholar 

  5. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  6. Maji SK, Perrin MH, Sawaya MR et al (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shewmaker F, McGlinchey RP, Wickner RB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286(19):16533–16540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183:611–631

    Article  CAS  PubMed  Google Scholar 

  9. Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic, New York

    Google Scholar 

  10. Knowles TPJ, Waudby CA, Devlin GL et al (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537

    Article  CAS  PubMed  Google Scholar 

  11. Thomas CTM, Andela Š, Johnny H, et al (2018) Chemical kinetics for kridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu Rev Phy Chem 69:1

    Google Scholar 

  12. Meisl G, Yang X, Hellstrand E et al (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci U S A 111:9384–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohen SIA, Linse S, Luheshi LM et al (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110:9758–9763

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walsh DM, Thulin E, Minogue AM et al (2009) A facile method for expression and purification of the Alzheimer's disease-associated amyloid beta-peptide. FEBS J 276:1266–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meisl G, Kirkegaard JB, Arosio P et al (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11(2):252–272

    Article  CAS  PubMed  Google Scholar 

  16. Cohen SIA, Vendruscolo M, Dobson CM et al (2011) Nucleated polymerization with secondary pathways. i. time evolution of the principal moments. J Chem Phys 135:065105

    Article  CAS  PubMed  Google Scholar 

  17. Cohen SIA, Vendruscolo M, Dobson CM et al (2011) Nucleated polymerization with secondary pathways. ii. determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys 135:065106

    Article  CAS  PubMed  Google Scholar 

  18. Cohen SIA, Vendruscolo M, Dobson CM et al (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421:160–171

    Article  CAS  PubMed  Google Scholar 

  19. Gaspar R, Meisl G, Buell AK et al (2017) Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys 50:e6

    Article  PubMed  Google Scholar 

  20. Michaels TCT, Yde P, Willis JC et al (2015) The length distribution of frangible biofilaments. J Chem Phys 143:164901

    Article  CAS  PubMed  Google Scholar 

  21. Arosio P, Vendruscolo M, Dobson CM et al (2014) Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 35:127–135

    Article  CAS  PubMed  Google Scholar 

  22. Abelein A, Graslund A, Danielsson J (2015) Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci U S A 112:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen SIA, Arosio P, Presto J et al (2015) The molecular chaperone brichos breaks the catalytic cycle that generates toxic Ab oligomers. Nat Struct Mol Biol 22:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cukalevski R, Yang X, Meisl G et al (2015) The A-beta 40 and A-beta 42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chem Sci 6:4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michaels TCT, Dear A, Kirkegaard JB et al (2016) Fluctuations in the kinetics of linear protein self-assembly. Phys Rev Lett 116:258103

    Article  CAS  PubMed  Google Scholar 

  26. Finder VH, Vodopivec I, Nitsch RM et al (2010) The recombinant amyloid-beta peptide Abeta1-42 aggregates faster and is more neurotoxic than synthetic Abeta1-42. J Mol Biol 396:9–18

    Article  CAS  PubMed  Google Scholar 

  27. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  CAS  Google Scholar 

  28. Michaels TCT, Cohen SIA, Vendruscolo M et al (2016) Hamiltonian dynamics of protein filament formation. Phys Rev Lett 116:038101

    Article  CAS  PubMed  Google Scholar 

  29. Meisl G, Yang X, Frohm B et al (2016) Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Sci Rep 6:18728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meisl G, Rajah L, Cohen SIA, et al (2017) Scaling behaviour and rate-determining steps in filamentous self-assembly. Chem Sci 8:7087–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Sidney Sussex College Cambridge (G.M.), the Swiss National Science Foundation (T.C.T.M.), Peterhouse College, Cambridge (T.C.T.M.) the ERC (T.P.J.K., S.L.), Swedish research council (S.L.), the BBSRC (T.P.J.K.), and the Newman Foundation (T.P.J.K.). We thank the members of the Knowles and Linse research groups for their input on experiences with this method, in particular Alexander Dear, Erik Hellstrand, Risto Cukalevski, Xiaoting Yang, Kalyani Sanagavarapu, Tanja Weiffert, Celine Galvagnion, Ricardo Gaspar, Ryan Limbocker, Catherine Xu and Patrick Flagmeier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Meisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meisl, G., Michaels, T.C.T., Linse, S., Knowles, T.P.J. (2018). Kinetic Analysis of Amyloid Formation. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics