Advertisement

A General Method to Prepare Peptide-Based Supramolecular Hydrogels

  • Dan Yuan
  • Junfeng Shi
  • Ning Zhou
  • Bing Xu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

As a type of versatile soft materials, supramolecular hydrogels made of peptides have received increasing research attention in past decade and have found useful applications in many areas. Meanwhile, numerous methods have been reported to initiate hydrogelation via noncovalent intermolecular interactions. Generally, most hydrogelation starts from a homogeneous solution and reaches a balance of water hydration and hydrophobic interactions, thereby resulting in hydrogelation. Here, we describe a general method to prepare supramolecular hydrogels of small peptides, and describe two examples to demonstrate hydrogel preparation.

Key words

Peptide Hydrogelation pH Enzyme 

Notes

Acknowledgments

This work was partially supported by grant from NIH (CA142746) and Keck Foundation.

References

  1. 1.
    Du X, Zhou J, Shi J, Xu B (2015) Supramolecular Hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307CrossRefGoogle Scholar
  2. 2.
    Zhou J, Xu B (2015) Enzyme-instructed self-assembly: a multistep process for potential cancer therapy. Bioconjug Chem 26:987–999CrossRefGoogle Scholar
  3. 3.
    Altunbas A, Pochan DJ (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. In: Deming T (ed) Peptide-based materials, pp 135–167Google Scholar
  4. 4.
    Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33CrossRefGoogle Scholar
  5. 5.
    Jung H, Park JS, Yeom J, Selvapalam N, Park KM, Oh K et al (2014) 3d tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 15:707–714CrossRefGoogle Scholar
  6. 6.
    He B, Yuan X, Wu J, Bai Y, Jiang DM (2015) Self-assembling peptide nanofiber scaffolds for bone tissue engineering. Sci Adv Mater 7:1221–1232CrossRefGoogle Scholar
  7. 7.
    Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C et al (2015) Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew Chem Int Ed 54:4517–4521CrossRefGoogle Scholar
  8. 8.
    Grinstaff MW (2007) Designing hydrogel adhesives for corneal wound repair. Biomaterials 28:5205–5214CrossRefGoogle Scholar
  9. 9.
    Yang, Z. M., Liang, G. L., Ma, M. L., Abbah, A. S., Lu, W. W. and Xu, B. (2007) D-glucosamine-based supramolecular hydrogels to improve wound healing. Chem Commun 843–845 Google Scholar
  10. 10.
    Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol 34:328–337CrossRefGoogle Scholar
  11. 11.
    Schnepp ZAC, Gonzalez-McQuire R, Mann S (2006) Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 18:1869–1872CrossRefGoogle Scholar
  12. 12.
    Shi N, Yin G, Han M, Xu Z (2008) Anions bonded on the supramolecular hydrogel surface as the growth center of biominerals. Colloids Surf B Biointerfaces 66:84–89CrossRefGoogle Scholar
  13. 13.
    Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ (2009) Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Langmuir 25:10285–10291CrossRefGoogle Scholar
  14. 14.
    Wang J, Wang Z, Gao J, Wang L, Yang Z, Kong D et al (2009) Incorporation of supramolecular hydrogels into agarose hydrogels-a potential drug delivery carrier. J Mater Chem 19:7892–7896CrossRefGoogle Scholar
  15. 15.
    Mandal D, Mandal SK, Ghosh M, Das PK (2015) Phenylboronic acid appended pyrene-based low-molecular-weight injectable hydrogel: glucose-stimulated insulin release. Chem Eur J 21:12042–12052CrossRefGoogle Scholar
  16. 16.
    Saboktakin MR, Tabatabaei RM (2015) Supramolecular hydrogels as drug delivery systems. Int J Biol Macromol 75:426–436CrossRefGoogle Scholar
  17. 17.
    Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein Array using supramolecular hydrogel. Nat Mater 3:58–64CrossRefGoogle Scholar
  18. 18.
    Ikeda M, Ochi R, Hamachi I (2010) Supramolecular hydrogel-based protein and chemosensor array. Lab Chip 10:3325–3334CrossRefGoogle Scholar
  19. 19.
    Yoshii T, Onogi S, Shigemitsu H, Hamachi I (2015) Chemically reactive supramolecular hydrogel coupled with a signal amplification system for enhanced analyte sensitivity. J Am Chem Soc 137:3360–3365CrossRefGoogle Scholar
  20. 20.
    Ikeda M, Ochi R, Wada A, Hamachi I (2010) Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chem Sci 1:491–498CrossRefGoogle Scholar
  21. 21.
    Ren C, Zhang J, Chen M, Yang Z (2014) Self-assembling small molecules for the detection of important analytes. Chem Soc Rev 43:7257–7266CrossRefGoogle Scholar
  22. 22.
    Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X et al (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527CrossRefGoogle Scholar
  23. 23.
    Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed 46:4285–4289CrossRefGoogle Scholar
  24. 24.
    Duncan KL, Ulijn RV (2015) Short peptides in minimalistic biocatalyst design. Biocatal Biotransformation 1:67–81Google Scholar
  25. 25.
    Su H, Koo JM, Cui H (2015) One-component nanomedicine. J Control Release 219:383–395CrossRefGoogle Scholar
  26. 26.
    Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M et al (2015) Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc 137:770–775CrossRefGoogle Scholar
  27. 27.
    Roy S, Maiti DK, Panigrahi S, Basak D, Banerjee A (2012) A new hydrogel from an amino acid-based perylene bisimide and its semiconducting, photo-switching behaviour. RSC Adv 2:11053–11060CrossRefGoogle Scholar
  28. 28.
    Kuang Y, Yuan D, Zhang Y, Kao A, Du X, Xu B (2013) Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Adv 3:7704–7707CrossRefGoogle Scholar
  29. 29.
    Bastings MMC, Koudstaal S, Kieltyka RE, Nakano Y, Pape ACH, Feyen DAM et al (2014) A fast Ph-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthcare Mater 3:70–78CrossRefGoogle Scholar
  30. 30.
    Qiao Y, Lin YY, Yang ZY, Chen HF, Zhang SF, Yan Y et al (2010) Unique temperature-dependent supramolecular self-assembly: from hierarchical 1d nanostructures to super hydrogel. J Phys Chem B 114:11725–11730CrossRefGoogle Scholar
  31. 31.
    Rao KV, Jayaramulu K, Maji TK, George SJ (2010) Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. Angew Chem Int Ed 49:4218–4222CrossRefGoogle Scholar
  32. 32.
    Bhattacharjee S, Bhattacharya S (2015) Charge transfer induces formation of stimuli-responsive, chiral, cohesive vesicles-on-a-string that eventually turn into a hydrogel. Chem Asian J 10:572–580CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Gu H, Yang Z, Xu B (2003) Supramolecular hydrogels respond to ligand−receptor interaction. J Am Chem Soc 125:13680–13681CrossRefGoogle Scholar
  34. 34.
    Cao W, Zhang XL, Miao XM, Yang ZM, Xu HP (2013) Gamma-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew Chem Int Ed 52:6233–6237CrossRefGoogle Scholar
  35. 35.
    Kuang Y, Gao Y, Shi J, Li J, Xu B (2014) The first supramolecular peptidic hydrogelator containing taurine. Chem Commun 50:2772–2774CrossRefGoogle Scholar
  36. 36.
    Pappas CG, Mutasa T, Frederix P, Fleming S, Bai S, Debnath S et al (2015) Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Mater Horiz 2:198–202CrossRefGoogle Scholar
  37. 37.
    Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071CrossRefGoogle Scholar
  38. 38.
    Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043CrossRefGoogle Scholar
  39. 39.
    Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J et al (2013) Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914CrossRefGoogle Scholar
  40. 40.
    Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q et al (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107CrossRefGoogle Scholar
  41. 41.
    Shi J, Du X, Yuan D, Zhou J, Zhou N, Huang Y et al (2014) D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules 15:3559–3568CrossRefGoogle Scholar
  42. 42.
    Yuan D, Zhou R, Shi J, Du X, Li X, Xu B (2014) Enzyme-instructed self-assembly of hydrogelators consisting of nucleobases, amino acids, and saccharide. RSC Adv 4:26487–26490CrossRefGoogle Scholar
  43. 43.
    Li J, Kuang Y, Shi J, Zhou J, Medina JE, Zhou R et al (2015) Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew Chem Int Ed 54:13307–13311CrossRefGoogle Scholar
  44. 44.
    Wu D, Du X, Shi J, Zhou J, Zhou N, Xu B (2015) The first Cd73-instructed supramolecular hydrogel. J Colloid Interface Sci 447:269–272CrossRefGoogle Scholar
  45. 45.
    Zhou J, Du XW, Li J, Yamagata N, Xu B (2015) Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly. J Am Chem Soc 137:10040–10043CrossRefGoogle Scholar
  46. 46.
    Shi J, Du X, Huang Y, Zhou J, Yuan D, Wu D et al (2015) Ligand–receptor interaction catalyzes the aggregation of small molecules to induce cell necroptosis. J Am Chem Soc 137:26–29CrossRefGoogle Scholar
  47. 47.
    Shi JF, Du XW, Yuan D, Haburcak R, Zhou N, Xu B (2015) Supramolecular detoxification of neurotoxic nanofibrils of small molecules via morphological switch. Bioconjug Chem 26:1879–1883CrossRefGoogle Scholar
  48. 48.
    Thompson MS, Tsurkan MV, Chwalek K, Bornhauser M, Schlierf M, Werner C et al (2015) Self-assembling hydrogels crosslinked solely by receptor-ligand interactions: Tunability, rationalization of physical properties, and 3d cell culture. Chem Eur J 21:3178–3182CrossRefGoogle Scholar
  49. 49.
    Sreenivasachary N, Lehn JM (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Natl Acad Sci U S A 102:5938–5943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brandeis UniversityWalthamUSA

Personalised recommendations