Skip to main content

Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

Protein aggregation is associated with many human diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and type II diabetes (T2D). Understanding the molecular mechanism of protein aggregation is essential for therapy development. Molecular dynamics (MD) simulations have been shown as powerful tools to study protein aggregation. However, conventional MD simulations can hardly sample the whole conformational space of complex protein systems within acceptable simulation time as it can be easily trapped in local minimum-energy states. Many enhanced sampling methods have been developed. Among these, the replica exchange molecular dynamics (REMD) method has gained great popularity. By combining MD simulation with the Monte Carlo algorithm, the REMD method is capable of overcoming high energy-barriers easily and of sampling sufficiently the conformational space of proteins. In this chapter, we present a brief introduction to REMD method and a practical application protocol with a case study of the dimerization of the 11–25 fragment of human islet amyloid polypeptide (hIAPP(11–25)), using the GROMACS software. We also provide solutions to problems that are often encountered in practical use, and provide some useful scripts/commands from our research that can be easily adapted to other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paparcone R, Cranford SW, Buehler MJ (2011) Self-folding and aggregation of amyloid nanofibrils. Nanoscale 3:1748–1755

    Article  CAS  Google Scholar 

  2. Knowles TP, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479

    Article  CAS  Google Scholar 

  3. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  CAS  Google Scholar 

  4. Rochet J-C, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  CAS  Google Scholar 

  5. Clark A, Lewis CE, Willis AC, Cooper GJS, Morris JF, Reid KBM, Turner RC (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 330:231–234

    Article  Google Scholar 

  6. Mitsutake A, Mori Y, Okamoto Y (2013) Enhanced sampling algorithms. Methods Mol Biol (Clifton, NJ) 924:153–195

    Article  CAS  Google Scholar 

  7. Barducci A, Pfaendtner J, Bonomi M (2015) Tackling sampling challenges in biomolecular simulations. Methods Mol Biol (Clifton, NJ) 1215:151–171

    Article  CAS  Google Scholar 

  8. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  CAS  Google Scholar 

  9. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  10. Qi R, Luo Y, Ma B, Nussinov R, Wei G (2014) Conformational distribution and alpha-helix to beta-sheet transition of human amylin fragment dimer. Biomacromolecules 15:122–131

    Article  CAS  Google Scholar 

  11. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  12. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  13. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  14. Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S (1983) Karplus M: CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  15. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé LV, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  16. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  17. Liu G, Prabhakar A, Aucoin D, Simon M, Sparks S, Robbins KJ, Sheen A, Petty SA, Lazo ND (2010) Mechanistic studies of peptide self-assembly: transient α-helices to stable β-sheets. J Am Chem Soc 132:18223–18232

    Article  CAS  Google Scholar 

  18. Seibert MM, Patriksson A, Hess B, van der Spoel D (2005) Reproducible polypeptide folding and structure prediction using molecular dynamics simulations. J Mol Biol 354:173–183

    Article  CAS  Google Scholar 

  19. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Psychnol J

    Google Scholar 

  20. Patriksson A, van der Spoel D (2008) A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys 10:2073–2077

    Article  CAS  Google Scholar 

  21. Rathore N, Chopra M, de Pablo JJ (2005) Optimal allocation of replicas in parallel tempering simulations. J Chem Phys 122:024111

    Article  Google Scholar 

  22. Zheng W, Andrec M, Gallicchio E, Levy RM (2007) Simulating replica exchange simulations of protein folding with a kinetic network model. Proc Natl Acad Sci 104:15340–15345

    Article  CAS  Google Scholar 

  23. Nymeyer H (2008) How efficient is replica exchange molecular dynamics? An analytic approach. J Chem Theory Comput 4:626–636

    Article  CAS  Google Scholar 

  24. Kofke DA (2002) On the acceptance probability of replica-exchange Monte Carlo trials. J Chem Phys 117:6911–6914

    Article  CAS  Google Scholar 

  25. Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22

    Article  CAS  Google Scholar 

  26. Bowman GR, Huang X, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods (San Diego, Calif) 49:197–201

    Article  CAS  Google Scholar 

  27. Qiao Q, Qi R, Wei G, Huang X (2016) Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Phys Chem Chem Phys 18:29892–29904

    Article  CAS  Google Scholar 

  28. Li H, Luo Y, Derreumaux P, Wei G (2011) Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer's amyloid-β(16-22) peptide. Biophys J 101:2267–2276

    Article  CAS  Google Scholar 

  29. Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 75:954–963

    Article  CAS  Google Scholar 

  30. Periole X, Mark AE (2007) Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. J Chem Phys 126:014903

    Article  Google Scholar 

  31. Abraham MJ, Gready JE (2008) Ensuring mixing efficiency of replica-exchange molecular dynamics simulations. J Chem Theory Comput 4:1119–1128

    Article  CAS  Google Scholar 

  32. Sindhikara DJ, Emerson DJ, Roitberg AE (2010) Exchange often and properly in replica exchange molecular dynamics. J Chem Theory Comput 6:2804–2808

    Article  CAS  Google Scholar 

  33. Sindhikara D, Meng Y, Roitberg AE (2008) Exchange frequency in replica exchange molecular dynamics. J Chem Phys 128:024103

    Article  Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanghong Wei or Ruth Nussinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qi, R., Wei, G., Ma, B., Nussinov, R. (2018). Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics