ATR-FTIR Analysis of Amyloid Proteins

  • Jean-Marie Ruysschaert
  • Vincent Raussens
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Attenuated total reflection FTIR (ATR-FTIR) has been used for decades to study protein secondary structures. More recently, it reveals also to be an exquisite and sensitive tool to study and discriminate amyloid aggregates. Based on the analysis of specific spectral features of β-sheet structures, we present here a detailed protocol to differentiate oligomers vs. fibrils. This protocol, applicable to all amyloid proteins, demonstrates the power of this inexpensive, rapid, and low protein material-demanding method.

Key words

Amyloid Aggregates Oligomers Fibrils FTIR ATR Structure 



Attenuated total reflection


Fourier-transform infrared


Full width at half height




Internal reflection element







The authors would like to thank all the talented Ph.D. students and postdoctoral fellows who help to establish and improve this protocol. V.R. is Senior Research Associate for the National Fund for Scientific Research (F.R.S.-FNRS, Belgium). V.R. acknowledges funding from the F.R.S.-FNRS (PDR grant #70214.12) and SAO-FRA (grant S#14025).


  1. 1.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefGoogle Scholar
  2. 2.
    Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, Pensalfini A, Soriaga AB, Landau M, Teng PK, Cascio D, Glabe C, Eisenberg D (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Breydo L, Uversky VN (2015) Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 589:2640–2648CrossRefPubMedGoogle Scholar
  4. 4.
    Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta 1828(10):2328–2338CrossRefPubMedGoogle Scholar
  5. 5.
    Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert J-M, Lonez C (2013) Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci 70:2999–3012CrossRefPubMedGoogle Scholar
  6. 6.
    Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V (2015) Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 471:323–333CrossRefPubMedGoogle Scholar
  7. 7.
    Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, Narayanaswami V, Goormaghtigh E, Ruysschaert J-M, Raussens V (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sarroukh R, Cerf E, Derclaye S, Dufrêne YF, Goormaghtigh E, Ruysschaert J-M, Raussens V (2011) Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cell Mol Life Sci 68:1429–1438CrossRefPubMedGoogle Scholar
  9. 9.
    Celej MS, Sarroukh R, Goormaghtigh E, Fidelio G, Ruysschaert JM, Raussens V (2012) Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem J 443:719–726CrossRefPubMedGoogle Scholar
  10. 10.
    de Planque MR, Raussens V, Contera SA, Rijkers DT, Liskamp RM, Ruysschaert JM, Ryan JF, Separovic F, Watts A (2007) β-Sheet structured beta-amyloid(1–40) perturbs phosphatidylcholine model membranes. J Mol Biol 368:982–997CrossRefGoogle Scholar
  11. 11.
    Cecchi C, Stefani M (2013) The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem 182:30–43CrossRefGoogle Scholar
  12. 12.
    Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2014) Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 43:6750–6764CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cerf E, Gustot A, Ruysschaert J-M, Goormaghtigh E, Raussens V (2011) Pathogenic E4 isoform of apolipoprotein E favors the oligomeric state of Aβ. FASEB J 25:1585–1595CrossRefGoogle Scholar
  14. 14.
    Itkin A, Dupres V, Dufrêne YF, Bechinger B, Ruysschaert J-M, Raussens V (2011) Calcium ions promote formation of amyloid β-peptide (1–40) oligomers causally implicated in neuronal toxicity of Alzheimer’s disease. PLoS One 6:e18250CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bharadwaj P, Head R, Martins R, Raussens V, Sarroukh R, Jegasothy H, Waddington L, Bennett L (2013) Modulation of amyloid-β 1–42 structure and toxicity by proline-rich whey peptides. Food Funct 4(1):92–103CrossRefGoogle Scholar
  16. 16.
    Miyazawa T, Blout ER (1961) The infrared spectra of polypeptides in different conformations: amide I and amide II bands. J Am Chem Soc 83:712–719CrossRefGoogle Scholar
  17. 17.
    Krimm S, Abe Y (1972) Intermolecular interaction effects in the amide I vibrations of polypeptides. Proc Natl Acad Sci U S A 69:2788–2792CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 15:607–625CrossRefGoogle Scholar
  19. 19.
    Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance interaction of amide-I vibration of the parallel-chain pleated sheets. Biopolymers 15:627–636CrossRefGoogle Scholar
  20. 20.
    Kubelka J, Keiderling TA (2001) Differentiation of beta-sheet-forming structures: ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein beta-sheets. J Am Chem Soc 123:12048–12058CrossRefPubMedGoogle Scholar
  21. 21.
    Karjalainen EL, Ravi HK, Barth A (2011) Simulation of the amide I absorption of stacked β-sheets. J Phys Chem B 115:749–757CrossRefPubMedGoogle Scholar
  22. 22.
    Goormaghtigh E, Cabiaux V, Ruysschaert JM (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem 193:409–420CrossRefPubMedGoogle Scholar
  23. 23.
    Goormaghtigh E, Ruysschaert JM, Raussens V (2006) Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 90:2946–2957CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New YorkGoogle Scholar
  25. 25.
    Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12:88–95CrossRefPubMedGoogle Scholar
  26. 26.
    Kauppinen JK, Moffat DJ, Cameron DG, Mantsch HH (1981) Noise in Fourier self-deconvolution. Appl Optics 20:1866–1879CrossRefGoogle Scholar
  27. 27.
    Wang P, Bohr W, Otto M, Danzer KM, Mizaikoff B (2015) Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy. Anal Bioanal Chem 407:4015–4021CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and BioinformaticsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations