Incorporation of an Azobenzene β-Turn Peptidomimetic into Amyloid-β to Probe Potential Structural Motifs Leading to β-Sheet Self-Assembly

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Alzheimer’s disease (AD) is characterized by chronic neurodegeneration and the insidious accumulation of senile plaques comprised of the amyloid-β (Aβ) peptide. An important goal in AD research is to characterize the structural basis for how Aβ aggregates exert their noxious effects on neurons. We describe herein synthetic steps to incorporate a light-controlled β-turn mimetic, 3-(3-aminomethylphenylazo)-phenylacetic acid (AMPP), into the backbone of a putative turn region within Aβ. AMPP adopts a rigid β-hairpin turn when azobenzene is in the cis conformation, and can adopt an extended “β-arc” turn in the trans-azobenzene conformation. The long lifetimes of these conformationally stable isomers permit detailed biochemical analyses that help to clarify the controversial role played by these two types of turns during the toxic misfolding pathway of Aβ. Methods to photo-nucleate the cis- or trans-AMPP isomeric turns in aqueous buffer are also described. Finally, we detail selected techniques to characterize the Aβ aggregates derived from these photoisomerized variants.

Key words

Azobenzene Photoswitch Photoisomerization Amyloid-β Alzheimer’s disease β-Hairpin β-Arc 

Notes

Acknowledgments

This work was made possible by a grant from the Alzheimer’s Association (NIRG-08-90797). We thank Professor Joseph P. Dinnocenzo for helpful discussions regarding photoisomerization methods and Karen Bentley of the University of Rochester Medical Center Electron Microscopy Core for assistance with transmission electron microscopy.

References

  1. 1.
    Braak H, Braak E (1991) Neuropathological stageing if Alzeimer-related changes. Acta Neuropathol 82:239–259CrossRefGoogle Scholar
  2. 2.
    Qian X, Hamad B, Dias-LAlcaca G (2015) The Alzheimer disease market. Nat Rev Drug Discov 14:675–676CrossRefGoogle Scholar
  3. 3.
    Jan Bieschke MH, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, del Amo JML, Grüning BA, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank RF, Reif B, Günther S, Walsh DM, Wanker EE (2012) Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat Chem Biol 8:93–101CrossRefGoogle Scholar
  4. 4.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539CrossRefGoogle Scholar
  5. 5.
    Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184CrossRefGoogle Scholar
  6. 6.
    Sylvain Lesne ́ MTK, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357CrossRefGoogle Scholar
  7. 7.
    Liu P, Reed MN, Kotilinek LA, Grant MK, Forster CL, Qiang W, Shapiro SL, Reichl JH, Chiang AC, Jankowsky JL, Wilmot CM, Cleary JP, Zahs KR, Ashe KH (2015) Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep 11:1760–1771CrossRefGoogle Scholar
  8. 8.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefGoogle Scholar
  9. 9.
    Brian O’Nuallain DBF, Nicoll AJ, Risse E, Ferguson N, Herron CE, Collinge J, Walsh DM (2010) Amyloid-protein dimers rapidly form stable synaptotoxic protofibrils. J Neurosci 30:14411–14419CrossRefGoogle Scholar
  10. 10.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Immunol 75:333–366Google Scholar
  11. 11.
    Liang Y, Lynn DG, Berland KM (2010) Direct observation of nucleation and growth in amyloid self-assembly. J Am Chem Soc 132:6306–6308CrossRefGoogle Scholar
  12. 12.
    Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99:16742–16747CrossRefGoogle Scholar
  13. 13.
    Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 105:18349–18354CrossRefGoogle Scholar
  14. 14.
    Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347CrossRefGoogle Scholar
  15. 15.
    Yiling Xiao BM, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y (2015) Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505CrossRefGoogle Scholar
  16. 16.
    Petkova AT, Yau W-M, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512CrossRefGoogle Scholar
  17. 17.
    Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T (2008) Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc Natl Acad Sci U S A 105:5099–5104CrossRefGoogle Scholar
  18. 18.
    Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB (2005) On the nucleation of amyloid β-protein monomer folding. Protein Sci 14:1581–1596CrossRefGoogle Scholar
  19. 19.
    Tomaselli S, Esposito V, Vangone P, NAJv N, Bonvin AMJJ, Guerrini R, Tancredi T, Temussi PA, Picone D (2006) The α-to-β conformational transition of Alzheimer’s Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. Chembiochem 7:257–267CrossRefGoogle Scholar
  20. 20.
    Kajava AV, Baxa U, Steven AC (2010) β arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J 24:1311–1319CrossRefGoogle Scholar
  21. 21.
    Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrene YF, Narayanaswami V, Goormaghtigh E, Ruysschaert J-M, Raussens V (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423CrossRefGoogle Scholar
  22. 22.
    Zimmerman DHI, Martin PK, Nix AJ, Rosenberry TL, Paravastu AK (2015) Antiparallel β-sheet structure within the C-terminal region of 42-residue Alzheimer’s amyloid-β peptides when they form 150-kDa oligomers. J Mol Biol 427:2319–2328CrossRefGoogle Scholar
  23. 23.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Sostrand WEV, Smith SO (2010) Structural conversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat Struct Mol Biol 17:561–567CrossRefGoogle Scholar
  24. 24.
    Sandberg A, Luheshi LM, Söllvander S, TPd B, Macao B, Knowles TPJ, Biverstål H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Härd T (2010) Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering. Proc Natl Acad Sci U S A 107:15595–15600CrossRefGoogle Scholar
  25. 25.
    Sciarretta KL, Gordon DJ, Petkova AT, Tycko R, Meredith SC (2005) Aβ40-Lactam (D23/K28) models a conformation highly favorable for nucleation of amyloid. Biochemistry 44:6003–6014CrossRefGoogle Scholar
  26. 26.
    Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL (2012) Turn nucleation perturbs amyloid β self-assembly and cytotoxicity. J Mol Biol 421:315–328CrossRefGoogle Scholar
  27. 27.
    Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL (2012) An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly. ACS Chem Neurosci 3:211–220CrossRefGoogle Scholar
  28. 28.
    Aemissegger A, Kräutler V, Gunsteren WFV, Hilvert D (2005) A Photoinducible β-Hairpin. J Am Chem Soc 127:2929–2936CrossRefGoogle Scholar
  29. 29.
    Aemissegger A, Hilvert D (2007) Synthesis and application of an azobenzene amino acid as a light-switchable turn element in polypeptides. Nat Protoc 2:161–167CrossRefGoogle Scholar
  30. 30.
    Kräutler V, Aemissegger A, Hünenberger PH, Hilvert D, Hansson T, Gunsteren WFV (2005) Use of molecular dynamics in the design and structure DETERMINATION of a photoinducible β-hairpin. J Am Chem Soc 127:4935–4942CrossRefGoogle Scholar
  31. 31.
    Dong S-L, Loweneck M, Schrader TE, Schreier WJ, Moroder L, Renner C (2006) A photocontrolled β-hairpin peptide. Chem Eur J 12:1114–1120CrossRefGoogle Scholar
  32. 32.
    O’Nuallain B, Thakur AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol 413:34–74CrossRefGoogle Scholar
  33. 33.
    O’Nuallain B, Shivaprasad S, Kheterpal I, Wetzel R (2005) Thermodynamics of Aβ(1–40) amyloid fibril formation. Biochemistry 44:12709–12718CrossRefGoogle Scholar
  34. 34.
    Ulysse L, Cubillos J, Chmielewski J (1995) Photoregulation of cyclic peptide conformation. J Am Chem Soc 117:8466–8467CrossRefGoogle Scholar
  35. 35.
    Behrendt R, Renner C, Schenk M, Wang F, Wachtveitl J, Oesterhelt D, Moroder L (1999) Photomodulation of the conformation of cyclic peptides with azobenzene moieties in the peptide backbone. Angew Chem Int Ed 38:2771–2774CrossRefGoogle Scholar
  36. 36.
    Donald A, Wellings EA (1997) Standard Fmoc protocols. Methods Enzymol 289:44–67CrossRefGoogle Scholar
  37. 37.
    Chi L, Sadovski O, Woolley GA (2006) A blue-green absorbing cross-linker for rapid photoswitching of peptide helix content. Bioconjug Chem 17:670–676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry, Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations