Discriminating Strains of Self-Propagating Protein Aggregates Using a Conformational Stability Assay

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Prions and other self-propagating protein aggregates can exist as distinct strains, which are thought to represent different conformations of aggregates. There is growing evidence that protein aggregate strains may be important for understanding the biology of common neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. While methodology for discriminating prion strains is in widespread use, there is a paucity of tools for comparing the conformational properties of aggregates composed of β-amyloid (Aβ) peptide or α-synuclein protein, particularly when present in complex samples such as brain extracts. The conformational stability assay (CSA) is a simple technique that measures the relative resistance of protein aggregates to chemical denaturation. While originally developed to differentiate prion strains, the CSA has since been adapted for use with other protein aggregates. Here, we describe the CSA in detail and outline its utility for distinguishing prion strains as well as unique conformational states of Aβ and α-synuclein aggregates.

Key words

Protein aggregates Protein misfolding Strains Prions Amyloid α-Synuclein Alzheimer’s disease Parkinson’s disease Creutzfeldt-Jakob disease Self-propagation 

References

  1. 1.
    Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336:1511–1513CrossRefPubMedGoogle Scholar
  2. 2.
    Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51CrossRefPubMedGoogle Scholar
  3. 3.
    Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20(2):130–138CrossRefPubMedGoogle Scholar
  4. 4.
    Goedert M (2015) NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349(6248):1255555CrossRefGoogle Scholar
  5. 5.
    Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:a006833CrossRefPubMedGoogle Scholar
  6. 6.
    Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893CrossRefPubMedGoogle Scholar
  7. 7.
    Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790CrossRefGoogle Scholar
  8. 8.
    Hardy J, Revesz T (2012) The spread of neurodegenerative disease. N Engl J Med 366:2126–2128CrossRefGoogle Scholar
  9. 9.
    Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38:87–103CrossRefPubMedGoogle Scholar
  10. 10.
    Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936CrossRefGoogle Scholar
  11. 11.
    Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265CrossRefGoogle Scholar
  12. 12.
    Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106:7443–7448CrossRefPubMedGoogle Scholar
  13. 13.
    Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268CrossRefGoogle Scholar
  14. 14.
    Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarstrom P, Nilsson KP, Jucker M (2013) Seeded strain-like transmission of beta-amyloid morphotypes in APP transgenic mice. EMBO Rep 14(11):1017–1022CrossRefPubMedGoogle Scholar
  15. 15.
    Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci U S A 111(28):10323–10328CrossRefPubMedGoogle Scholar
  16. 16.
    Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M, DeArmond SJ, Giles K, DeGrado WF, Prusiner SB (2014) Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 111(28):10329–10334CrossRefPubMedGoogle Scholar
  17. 17.
    Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M, Cohen Y, Chen W, Blevins J, Appleby BS, Surewicz K, Surewicz WK, Sajatovic M, Tatsuoka C, Zhang S, Mayo P, Butkiewicz M, Haines JL, Lerner AJ, Safar JG (2015) Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138(Pt 4):1009–1022CrossRefPubMedGoogle Scholar
  18. 18.
    Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117CrossRefGoogle Scholar
  19. 19.
    Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Bockmann A, Meier BH, Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575CrossRefPubMedGoogle Scholar
  20. 20.
    Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560CrossRefPubMedGoogle Scholar
  21. 21.
    Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522(7556):340–344CrossRefGoogle Scholar
  22. 22.
    Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317CrossRefPubMedGoogle Scholar
  23. 23.
    Peretz D, Scott M, Groth D, Williamson A, Burton D, Cohen FE, Prusiner SB (2001) Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10:854–863CrossRefPubMedGoogle Scholar
  24. 24.
    Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton D, DeArmond SJ, Prusiner SB, Scott MR (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34:921–932CrossRefGoogle Scholar
  25. 25.
    Legname G, Nguyen H-OB, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103:19105–19110CrossRefPubMedGoogle Scholar
  26. 26.
    Watts JC, Giles K, Patel S, Oehler A, Dearmond SJ, Prusiner SB (2014) Evidence That bank vole PrP is a universal acceptor for prions. PLoS Pathog 10(4):e1003990CrossRefPubMedGoogle Scholar
  27. 27.
    Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, Balachandran A, McKenzie D, Castilla J, Soto C, Jewell J, Graham C, Hoover EA, Telling GC (2010) Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328:1154–1158CrossRefPubMedGoogle Scholar
  28. 28.
    Safar JG, Scott M, Monaghan J, Deering C, Didorenko S, Vergara J, Ball H, Legname G, Leclerc E, Solforosi L, Serban H, Groth D, Burton DR, Prusiner SB, Williamson RA (2002) Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat Biotechnol 20:1147–1150CrossRefGoogle Scholar
  29. 29.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  30. 30.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164CrossRefGoogle Scholar
  31. 31.
    Lee BR, Kamitani T (2011) Improved immunodetection of endogenous α-synuclein. PLoS One 6:e23939CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tanz Centre for Research in Neurodegenerative Diseases, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations