Preparation of Stable Amyloid-β Oligomers Without Perturbative Methods

  • Samuel A. Kotler
  • Ayyalusamy Ramamoorthy
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Soluble amyloid-β (Aβ) oligomers have become a focal point in the study of Alzheimer’s disease due to their ability to elicit cytotoxicity. A number of recent studies have concentrated on the structural characterization of soluble Aβ oligomers to gain insight into their mechanism of toxicity. Consequently, providing reproducible protocols for the preparation of such oligomers is of utmost importance. The method presented in this chapter details a protocol for preparing an Aβ oligomer, with a primarily disordered secondary structure, without the need for chemical modification or amino acid substitution. Due to the stability of these disordered Aβ oligomers and the reproducibility with which they form, they are amenable for biophysical and high-resolution structural characterization.

Key words

Amyloid-β Alzheimer’s disease Oligomer Protein aggregation Purification NMR 



Research on amyloid-beta is supported by funds from the National Institutes of Health (AG048934 to A.R.).


  1. 1.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2(7):a006338CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357CrossRefPubMedGoogle Scholar
  4. 4.
    Kotler SA, Walsh P, Brender JR, Ramamoorthy A (2014) Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem Soc Rev 43(19):6692–6700CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Butterfield SM, Lashuel H (2010) Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 49(33):5628–5654CrossRefPubMedGoogle Scholar
  6. 6.
    Jang H et al (2013) Alzheimer’s disease: which type of amyloid-preventing drug agents to employ? Phys Chem Chem Phys 15(23):8868CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chimon S et al (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14(12):1157–1164CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen SIA et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22(3):207–213CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Serra-Vidal B et al (2014) Hydrogen/Deuterium Exchange-Protected Oligomers Populated during Aβ Fibril Formation Correlate with Neuronal Cell Death. ACS Chem Biol 9(11):2678–2685CrossRefPubMedGoogle Scholar
  10. 10.
    Ladiwala AR et al (2012) Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity. J Biol Chem 287(29):24765–24773CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ahmed M et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s beta-amyloid, Abeta(1-40), by solid-state NMR spectroscopy. J Am Chem Soc 127(39):13472–13473CrossRefGoogle Scholar
  13. 13.
    Jan A, Hartley DM, Lashuel H (2010) Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer’s disease research. Nat Protoc 5(6):1186–1209CrossRefGoogle Scholar
  14. 14.
    Lopes DHJ, Sinha S, Rosensweig C, Bitan G (2012) Application of photochemical cross-linking to the study of oligomerization of amyloidogenic proteins. Methods Mol Biol 849:11–21CrossRefPubMedGoogle Scholar
  15. 15.
    Rosensweig C et al (2012) Preparation of stable amyloid β-protein oligomers of defined assembly order. Methods Mol Biol 849:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sarkar B et al (2014) Significant structural differences between transient amyloid-β oligomers and less-toxic fibrils in regions known to harbor familial Alzheimer’s mutations. Angew Chemie Int Ed 53(27):6888–6892CrossRefGoogle Scholar
  17. 17.
    Lendel C et al (2014) A Hexameric peptide barrel as building block of amyloid-β protofibrils. Angew Chem Int Ed Engl 53(47):12756–12760CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu L et al (2009) Structural characterization of a soluble amyloid beta-peptide oligomer. Biochemistry 48(9):1870–1877CrossRefGoogle Scholar
  19. 19.
    Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP (2014) Alzheimer peptides aggregate into transient nanoglobules that nucleate fibrils. Biochemistry 53(40):6302–6308CrossRefPubMedGoogle Scholar
  21. 21.
    Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schütz AK et al (2015) Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the osaka mutation. Angew Chemie Int Ed 54(1):331–335CrossRefGoogle Scholar
  23. 23.
    Vilar M, Wang L, Riek R (2012) Structural studies of amyloids by quenched hydrogen-deuterium exchange by NMR. Methods Mol Biol 849:185–198CrossRefPubMedGoogle Scholar
  24. 24.
    Kotler SA et al (2015) High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Sci Rep 5:11811CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sodium Phosphate (2006) Cold Spring Harb Protoc 2006(1):pdb.rec8303CrossRefGoogle Scholar
  26. 26.
    Bitan G, Teplow DB (2005) Preparation of aggregate-free, low molecular weight amyloid-beta for assembly and toxicity assays. Methods Mol Biol 299:3–9PubMedGoogle Scholar
  27. 27.
    Ryan TM et al (2013) Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 1:e73CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weber DK, Sani M-A, Gehman JD (2014) A routine method for cloning, expressing and purifying Aβ(1-42) for structural NMR studies. Amino Acids 46(10):2415–2426CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang TO, Grechko M, Moran SD, Zanni MT (2016) Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies. Methods Mol Biol 1345:21–41CrossRefPubMedGoogle Scholar
  30. 30.
    Nilsson MR, Nguyen LL, Raleigh DP (2001) Synthesis and purification of amyloidogenic peptides. Anal Biochem 288(1):76–82CrossRefPubMedGoogle Scholar
  31. 31.
    Walsh P, Neudecker P, Sharpe S (2010) Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126). J Am Chem Soc 132(22):7684–7695CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biophysics ProgramUniversity of MichiganAnn ArborUSA
  2. 2.Department of ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations