Disaggregation of Aβ42 for Structural and Biochemical Studies

  • Hyewon Chung
  • Elliot J. Crooks
  • Martine Ziliox
  • Steven O. Smith
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


The amyloid-β (Aβ) peptides that form the amyloid fibrils associated with Alzheimer’s disease are generated by sequential proteolysis of the amyloid precursor protein by β- and γ-secretase. The two predominant Aβ peptides, Aβ40 and Aβ42, differ by two amino acids, are soluble as monomers at low concentration (and/or low temperature) and are normally cleared from the brain parenchyma. In order to study the structure and assembly of these peptides, they are often synthesized using solid-phase peptide synthesis and purified. Here, we outline the method we use to prepare monomeric Aβ for structural and biochemical studies.

Key words

Aβ peptides Aβ40 Aβ42 Alzheimer’s disease FTIR NMR 



This work was supported by NIH-NSF instrumentation grants (S10 RR13889 and DBI-9977553), a grant from the NIH to S.O.S (AG 27317). We gratefully acknowledge the W.M. Keck Foundation for support of the NMR facilities in the Center of Structural Biology at Stony Brook.


  1. 1.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Mullerhill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638CrossRefGoogle Scholar
  4. 4.
    Portelius E, Bogdanovic N, Gustavsson M, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO (2015) Mechanism of nucleated conformational conversion of Aβ42. Biochemistry 54(27):4197–4207CrossRefPubMedGoogle Scholar
  6. 6.
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357CrossRefPubMedGoogle Scholar
  7. 7.
    McDonald RJ, Craig LA, Hong NS (2010) The etiology of age-related dementia is more complicated than we think. Behav Brain Res 214:3–11CrossRefPubMedGoogle Scholar
  8. 8.
    Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN et al (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051–3067CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shankar GM, Leissring MA, Adame A, Sun XY, Spooner E, Masliah E, Selkoe DJ, Lemere CA, Walsh DM (2009) Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Aβ assembly forms throughout life. Neurobiol Dis 36:293–302CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid beta protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381CrossRefPubMedGoogle Scholar
  11. 11.
    Hayden EY, Teplow DB (2013) Amyloid beta-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 5:60CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Teplow DB (2006) Preparation of amyloid beta-protein for structural and functional studies. Methods Enzymol 413:20–33CrossRefPubMedGoogle Scholar
  13. 13.
    LeVine H (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284CrossRefGoogle Scholar
  14. 14.
    Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO (2014) Capping of Aβ42 oligomers by small molecule inhibitors. Biochemistry 53:7893–7903CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamaguchi T, Matsuzaki K, Hoshino M (2011) Transient formation of intermediate conformational states of amyloid-beta peptide revealed by heteronuclear magnetic resonance spectroscopy. FEBS Lett 585:1097–1102CrossRefPubMedGoogle Scholar
  16. 16.
    Garai K, Frieden C (2013) Quantitative analysis of the time course of a beta oligomerization and subsequent growth steps using tetramethylrhodamine-labeled a beta. Proc Natl Acad Sci U S A 110:3321–3326CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622CrossRefPubMedGoogle Scholar
  18. 18.
    Pachahara SK, Adicherla H, Nagaraj R (2015) Self-Assembly of Aβ40, Aβ42 and Aβ43 peptides in aqueous mixtures of fluorinated alcohols. PLoS One 10:1–18CrossRefGoogle Scholar
  19. 19.
    Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24:743–750CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hyewon Chung
    • 1
  • Elliot J. Crooks
    • 2
  • Martine Ziliox
    • 2
  • Steven O. Smith
    • 2
  1. 1.Department of OphthalmologyKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea
  2. 2.Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA

Personalised recommendations