Skip to main content

Disaggregation of Aβ42 for Structural and Biochemical Studies

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

The amyloid-β (Aβ) peptides that form the amyloid fibrils associated with Alzheimer’s disease are generated by sequential proteolysis of the amyloid precursor protein by β- and γ-secretase. The two predominant Aβ peptides, Aβ40 and Aβ42, differ by two amino acids, are soluble as monomers at low concentration (and/or low temperature) and are normally cleared from the brain parenchyma. In order to study the structure and assembly of these peptides, they are often synthesized using solid-phase peptide synthesis and purified. Here, we outline the method we use to prepare monomeric Aβ for structural and biochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  2. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Mullerhill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638

    Article  CAS  PubMed  Google Scholar 

  4. Portelius E, Bogdanovic N, Gustavsson M, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO (2015) Mechanism of nucleated conformational conversion of Aβ42. Biochemistry 54(27):4197–4207

    Article  CAS  PubMed  Google Scholar 

  6. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    Article  CAS  PubMed  Google Scholar 

  7. McDonald RJ, Craig LA, Hong NS (2010) The etiology of age-related dementia is more complicated than we think. Behav Brain Res 214:3–11

    Article  PubMed  Google Scholar 

  8. Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN et al (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051–3067

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shankar GM, Leissring MA, Adame A, Sun XY, Spooner E, Masliah E, Selkoe DJ, Lemere CA, Walsh DM (2009) Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Aβ assembly forms throughout life. Neurobiol Dis 36:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid beta protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayden EY, Teplow DB (2013) Amyloid beta-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  12. Teplow DB (2006) Preparation of amyloid beta-protein for structural and functional studies. Methods Enzymol 413:20–33

    Article  CAS  PubMed  Google Scholar 

  13. LeVine H (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  CAS  PubMed  Google Scholar 

  14. Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO (2014) Capping of Aβ42 oligomers by small molecule inhibitors. Biochemistry 53:7893–7903

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi T, Matsuzaki K, Hoshino M (2011) Transient formation of intermediate conformational states of amyloid-beta peptide revealed by heteronuclear magnetic resonance spectroscopy. FEBS Lett 585:1097–1102

    Article  CAS  PubMed  Google Scholar 

  16. Garai K, Frieden C (2013) Quantitative analysis of the time course of a beta oligomerization and subsequent growth steps using tetramethylrhodamine-labeled a beta. Proc Natl Acad Sci U S A 110:3321–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  CAS  PubMed  Google Scholar 

  18. Pachahara SK, Adicherla H, Nagaraj R (2015) Self-Assembly of Aβ40, Aβ42 and Aβ43 peptides in aqueous mixtures of fluorinated alcohols. PLoS One 10:1–18

    Article  Google Scholar 

  19. Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24:743–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH-NSF instrumentation grants (S10 RR13889 and DBI-9977553), a grant from the NIH to S.O.S (AG 27317). We gratefully acknowledge the W.M. Keck Foundation for support of the NMR facilities in the Center of Structural Biology at Stony Brook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven O. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chung, H., Crooks, E.J., Ziliox, M., Smith, S.O. (2018). Disaggregation of Aβ42 for Structural and Biochemical Studies. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics