Advertisement

Synthesis and Evaluation of Self-Assembled Nanostructures of Peptide-π Chromophore Conjugates

  • Tejaswini S. Kale
  • John D. Tovar
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Peptides provide a biomolecular scaffold for solubilizing and assembling π-conjugated molecules in aqueous media. The properties of such peptide-π chromophore conjugates can be manipulated by varying the constituent amino acid residues in the peptide backbone as well as the chromophore moieties. Such a precise handle on molecular structure leads to molecules with diverse macromolecular and material properties. We developed a versatile synthetic protocol that leads to a wide range of peptide-π chromophore conjugates in which the chromophores are covalently attached to the peptide backbone such that the chromophore is flanked by two peptide chains. This “trimer” structure lends interesting self-assembly properties to these materials which may be useful for a plethora of biological applications.

Key words

Peptides Peptide-π conjugates Self-assembly Stimuli sensitive self-assembly 1-D nanostructure 

Notes

Acknowledgments

We thank Johns Hopkins University and the Department of Energy Office of Basic Energy Sciences (DE-SC0004857, J.D.T. peptide nanomaterials synthesis) for generous support.

References

  1. 1.
    Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41:1674–1684CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Whitesides G, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRefGoogle Scholar
  3. 3.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aida T, Meijer EW, Stupp S (2012) Functional supramolecular polymers. Science 335:813–817CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jatsch A, Schillinger EK, Schmid S, Bauerle P (2010) Biomolecule assisted self-assembly of [small pi]-conjugated oligomers. J Mater Chem 20:3563–3578CrossRefGoogle Scholar
  6. 6.
    Hartgerink J, Benaish E, Stupp S (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688CrossRefGoogle Scholar
  7. 7.
    Rayburn J, Cardoso A, Adams D (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42:5143–5156CrossRefGoogle Scholar
  8. 8.
    Smith K, Tejeda-Montes E, Poch M, Mata A (2011) Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chem Soc Rev 40:4563–4577CrossRefPubMedGoogle Scholar
  9. 9.
    Bowerman C, Nilsson B (2012) Review self-assembly of amphipathic β-sheet peptides: insights and applications. Pept Sci 98:169–184CrossRefGoogle Scholar
  10. 10.
    Mandal D, Shirazi A, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12:3544–3561CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Matson J, Zhao H, Stupp S (2011) Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 15:225–235CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Skilling K, Citossi F, Bradshaw T, Ashford M, Kellam B, Marlow M (2014) Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter 10:237–256CrossRefPubMedGoogle Scholar
  13. 13.
    Tovar JD (2013) Supramolecular construction of optoelectronic biomaterials. Acc Chem Res 46:1527–1537CrossRefPubMedGoogle Scholar
  14. 14.
    Bauerle P, Emge A (1998) Specific recognition of nucleobase-functionalized polythiophenes. Adv Mater 10:324–330CrossRefGoogle Scholar
  15. 15.
    Schmid S, Mena-Osteritz E, Kopyshev A, Bauerle P (2009) Self-assembling carbohydrate-functionalized oligothiophenes. Org Lett 11:5098–5101CrossRefPubMedGoogle Scholar
  16. 16.
    Sanders AM, Dawidczyk TJ, Katz HE, Tovar JD (2012) Peptide-based supramolecular semiconductor nanomaterials via pd-catalyzed solid-phase “Dimerizations”. ACS Macro Lett 1:1326–1329CrossRefGoogle Scholar
  17. 17.
    Vadehra GS, Wall BD, Diegelmann SR, Tovar JD (2010) On-resin dimerization incorporates a diverse array of pi-conjugated functionalities within aqueous self-assembling peptide backbones. Chem Commun 46:3947–3949CrossRefGoogle Scholar
  18. 18.
    Guo X, Watson MD (2008) Conjugated polymers from naphthalene bisimide. Org Lett 10:5333–5336CrossRefPubMedGoogle Scholar
  19. 19.
    Kilbinger AFM, Schenning APHJ, Goldoni F, Feast WJ, Meijer EW (2000) Chiral aggregates of α,ω-disubstituted sexithiophenes in protic and aqueous media. J Am Chem Soc 122:1820–1821CrossRefGoogle Scholar
  20. 20.
    Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598CrossRefPubMedGoogle Scholar
  21. 21.
    El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602CrossRefPubMedGoogle Scholar
  22. 22.
    Zinger B, Mann KR, Hill MG, Miller LL (1992) Photochemical formation of oligothiophene cation radicals in acidic solution and nafion. Chem Mater 4:1113–1118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Institute for NanoBioTechnology, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations